B. Toledo-Padr'on, C. Lovis, A. Mascareno, S. Barros, J. Hern'andez, A. Sozzetti, F. Bouchy, M. Z. Osorio, R. Rebolo, S. Cristiani, F. Pepe, N. Santos, S. Sousa, H. Tabernero, J. Lillo-Box, D. Bossini, V. Adibekyan, R. Allart, M. Damasso, V. D’Odorico, P. Figueira, B. Lavie, G. Curto, A. Mehner, G. Micela, A. Modigliani, N. Nunes, E. Pall'e, M. Abreu, M. Affolter, Y. Alibert, M. Aliverti, C. Prieto, D. Alves, M. Amate, G. Ávila, V. Baldini, T. Bandy, S. Benatti, W. Benz, A. Bianco, C. Broeg, A. Cabral, G. Calderone, R. Cirami, J. Coelho, P. Conconi, I. Coretti, C. Cumani, G. Cupani, S. Deiries, H. Dekker, B. Delabre, O. Demangeon, P. D. Marcantonio, D. Ehrenreich, A. Fragoso, L. Genolet, M. Genoni, R. G. Santos, I. Hughes, O. Iwert, J. Knudstrup, M. Landoni, J. Lizon, C. Maire, A. Manescau, C. Martins, D. M'egevand, P. Molaro, M. Monteiro, M. Monteiro, M. Moschetti, E. Mueller, L. Oggioni, A. Oliveira, M. Oshagh, G. Pariani, L. Pasquini, E. Poretti, J. L. Rasilla, E. Redaelli, M. Riva, S. Tschudi, P. Sant
{"title":"Characterization of the K2-38 planetary system","authors":"B. Toledo-Padr'on, C. Lovis, A. Mascareno, S. Barros, J. Hern'andez, A. Sozzetti, F. Bouchy, M. Z. Osorio, R. Rebolo, S. Cristiani, F. Pepe, N. Santos, S. Sousa, H. Tabernero, J. Lillo-Box, D. Bossini, V. Adibekyan, R. Allart, M. Damasso, V. D’Odorico, P. Figueira, B. Lavie, G. Curto, A. Mehner, G. Micela, A. Modigliani, N. Nunes, E. Pall'e, M. Abreu, M. Affolter, Y. Alibert, M. Aliverti, C. Prieto, D. Alves, M. Amate, G. Ávila, V. Baldini, T. Bandy, S. Benatti, W. Benz, A. Bianco, C. Broeg, A. Cabral, G. Calderone, R. Cirami, J. Coelho, P. Conconi, I. Coretti, C. Cumani, G. Cupani, S. Deiries, H. Dekker, B. Delabre, O. Demangeon, P. D. Marcantonio, D. Ehrenreich, A. Fragoso, L. Genolet, M. Genoni, R. G. Santos, I. Hughes, O. Iwert, J. Knudstrup, M. Landoni, J. Lizon, C. Maire, A. Manescau, C. Martins, D. M'egevand, P. Molaro, M. Monteiro, M. Monteiro, M. Moschetti, E. Mueller, L. Oggioni, A. Oliveira, M. Oshagh, G. Pariani, L. Pasquini, E. Poretti, J. L. Rasilla, E. Redaelli, M. Riva, S. Tschudi, P. Sant","doi":"10.1051/0004-6361/202038187","DOIUrl":null,"url":null,"abstract":"We characterized the transiting planetary system orbiting the G2V star K2-38 using the new-generation echelle spectrograph ESPRESSO. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets. Using 43 ESPRESSO high-precision radial velocity measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a MCMC analysis, significantly improving their mass measurements. Using ESPRESSO spectra, we derived the stellar parameters, $T_{\\rm eff}$=5731$\\pm$66, $\\log g$=4.38$\\pm$0.11~dex, and $[Fe/H]$=0.26$\\pm$0.05~dex, and thus the mass and radius of K2-38, $M_{\\star}$=1.03 $^{+0.04}_{-0.02}$~M$_{\\oplus}$ and $R_{\\star}$=1.06 $^{+0.09}_{-0.06}$~R$_{\\oplus}$. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with $R_{\\rm P}$=1.54$\\pm$0.14~R$_{\\rm \\oplus}$ and $M_{\\rm p}$=7.3$^{+1.1}_{-1.0}$~M$_{\\oplus}$, and K2-38c as a sub-Neptune with $R_{\\rm P}$=2.29$\\pm$0.26~R$_{\\rm \\oplus}$ and $M_{\\rm p}$=8.3$^{+1.3}_{-1.3}$~M$_{\\oplus}$. We derived a mean density of $\\rho_{\\rm p}$=11.0$^{+4.1}_{-2.8}$~g cm$^{-3}$ for K2-38b and $\\rho_{\\rm p}$=3.8$^{+1.8}_{-1.1}$~g~cm$^{-3}$ for K2-38c, confirming K2-38b as one of the densest planets known to date. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky model with a H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the radial velocity time-series whose origin could be linked to a 0.25-3~M$_{\\rm J}$ planet or stellar activity.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202038187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We characterized the transiting planetary system orbiting the G2V star K2-38 using the new-generation echelle spectrograph ESPRESSO. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets. Using 43 ESPRESSO high-precision radial velocity measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a MCMC analysis, significantly improving their mass measurements. Using ESPRESSO spectra, we derived the stellar parameters, $T_{\rm eff}$=5731$\pm$66, $\log g$=4.38$\pm$0.11~dex, and $[Fe/H]$=0.26$\pm$0.05~dex, and thus the mass and radius of K2-38, $M_{\star}$=1.03 $^{+0.04}_{-0.02}$~M$_{\oplus}$ and $R_{\star}$=1.06 $^{+0.09}_{-0.06}$~R$_{\oplus}$. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with $R_{\rm P}$=1.54$\pm$0.14~R$_{\rm \oplus}$ and $M_{\rm p}$=7.3$^{+1.1}_{-1.0}$~M$_{\oplus}$, and K2-38c as a sub-Neptune with $R_{\rm P}$=2.29$\pm$0.26~R$_{\rm \oplus}$ and $M_{\rm p}$=8.3$^{+1.3}_{-1.3}$~M$_{\oplus}$. We derived a mean density of $\rho_{\rm p}$=11.0$^{+4.1}_{-2.8}$~g cm$^{-3}$ for K2-38b and $\rho_{\rm p}$=3.8$^{+1.8}_{-1.1}$~g~cm$^{-3}$ for K2-38c, confirming K2-38b as one of the densest planets known to date. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky model with a H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the radial velocity time-series whose origin could be linked to a 0.25-3~M$_{\rm J}$ planet or stellar activity.