Origin and dynamical evolution of the asteroid belt

S. Raymond, D. Nesvorný
{"title":"Origin and dynamical evolution of the asteroid belt","authors":"S. Raymond, D. Nesvorný","doi":"10.1017/9781108856324.019","DOIUrl":null,"url":null,"abstract":"The asteroid belt was dynamically shaped during and after planet formation. Despite representing a broad ring of stable orbits, the belt contains less than one one-thousandth of an Earth mass. The asteroid orbits are dynamically excited with a wide range in eccentricity and inclination and their compositions are diverse, with a general trend toward dry objects in the inner belt and more water-rich objects in the outer belt. Here we review models of the asteroid belt's origins and dynamical history. The classical view is that the belt was born with several Earth masses in planetesimals, then strongly depleted. However, it is possible that very few planetesimals ever formed in the asteroid region and that the belt's story is one of implantation rather than depletion. A number of processes may have implanted asteroids from different regions of the Solar System, dynamically removed them, and excited their orbits. During the gaseous disk phase these include the effects of giant planet growth and migration and sweeping secular resonances. After the gaseous disk phase these include scattering from resident planetary embryos, chaos in the giant planets' orbits, the giant planet instability, and long-term dynamical evolution. Different global models for Solar System formation imply contrasting dynamical histories of the asteroid belt. Vesta and Ceres may have been implanted from opposite regions of the Solar System -- Ceres from the Jupiter-Saturn region and Vesta from the terrestrial planet region -- and could therefore represent very different formation conditions.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108856324.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The asteroid belt was dynamically shaped during and after planet formation. Despite representing a broad ring of stable orbits, the belt contains less than one one-thousandth of an Earth mass. The asteroid orbits are dynamically excited with a wide range in eccentricity and inclination and their compositions are diverse, with a general trend toward dry objects in the inner belt and more water-rich objects in the outer belt. Here we review models of the asteroid belt's origins and dynamical history. The classical view is that the belt was born with several Earth masses in planetesimals, then strongly depleted. However, it is possible that very few planetesimals ever formed in the asteroid region and that the belt's story is one of implantation rather than depletion. A number of processes may have implanted asteroids from different regions of the Solar System, dynamically removed them, and excited their orbits. During the gaseous disk phase these include the effects of giant planet growth and migration and sweeping secular resonances. After the gaseous disk phase these include scattering from resident planetary embryos, chaos in the giant planets' orbits, the giant planet instability, and long-term dynamical evolution. Different global models for Solar System formation imply contrasting dynamical histories of the asteroid belt. Vesta and Ceres may have been implanted from opposite regions of the Solar System -- Ceres from the Jupiter-Saturn region and Vesta from the terrestrial planet region -- and could therefore represent very different formation conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小行星带的起源和动力学演化
小行星带在行星形成期间和之后是动态成形的。尽管它代表了一个由稳定轨道组成的宽环,但它的质量还不到地球的千分之一。小行星轨道受动态激励,偏心度和倾角范围大,组成成分多样,总的趋势是内带偏干,外带偏富水。在这里,我们回顾了小行星带起源和动力历史的模型。经典的观点是,该带诞生时具有几个地球质量的星子,然后被强烈地耗尽。然而,有可能只有很少的星子在小行星区形成,小行星带的故事是一个植入而不是耗尽的故事。许多过程可能从太阳系的不同区域植入小行星,动态地移除它们,并激发它们的轨道。在气态盘阶段,这些影响包括巨大行星的生长和迁移以及广泛的长期共振。在气态盘阶段之后,这些包括来自常驻行星胚胎的散射,巨行星轨道的混乱,巨行星的不稳定性以及长期的动态演化。太阳系形成的不同全球模型暗示了小行星带不同的动力学历史。灶神星和谷神星可能是从太阳系的相反区域植入的——谷神星来自木星-土星区域,灶神星来自类地行星区域——因此可能代表了截然不同的形成条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting The Averaged Problem in The Case of Mean-Motion Resonances of The Restricted Three-Body Problem. Global Rigorous Treatment and Application To The Co-Orbital Motion. Automatic planetary defense Deflecting NEOs by missiles shot from L1 and L3 (Earth-Moon). Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction Origin and dynamical evolution of the asteroid belt Revised planet brightness temperatures using the Planck/LFI 2018 data release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1