Competition between fractional quantum Hall liquid and Wigner solid at small fillings: Role of layer thickness and Landau level mixing

K. Villegas Rosales, S. Singh, M. Ma, M. S. Hossain, Y. Chung, L. Pfeiffer, K. West, K. Baldwin, M. Shayegan
{"title":"Competition between fractional quantum Hall liquid and Wigner solid at small fillings: Role of layer thickness and Landau level mixing","authors":"K. Villegas Rosales, S. Singh, M. Ma, M. S. Hossain, Y. Chung, L. Pfeiffer, K. West, K. Baldwin, M. Shayegan","doi":"10.1103/PHYSREVRESEARCH.3.013181","DOIUrl":null,"url":null,"abstract":"What is the fate of the ground state of a two-dimensional electron system (2DES) at very low Landau level filling factors ($\\nu$) where interaction reigns supreme? An ordered array of electrons, the so-called Wigner crystal, has long been believed to be the answer. It was in fact the search for the elusive Wigner crystal that led to the discovery of an unexpected, incompressible liquid state, namely the fractional quantum Hall state at $\\nu=1/3$. Understanding the competition between the liquid and solid ground states has since remained an active field of fundamental research. Here we report experimental data for a new two-dimensional system where the electrons are confined to an AlAs quantum well. The exceptionally high quality of the samples and the large electron effective mass allow us to determine the liquid-solid phase diagram for the two-dimensional electrons in a large range of filling factors near $\\simeq 1/3$ and $\\simeq 1/5$. The data and their comparison with an available theoretical phase diagram reveal the crucial role of Landau level mixing and finite electron layer thickness in determining the prevailing ground states.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

What is the fate of the ground state of a two-dimensional electron system (2DES) at very low Landau level filling factors ($\nu$) where interaction reigns supreme? An ordered array of electrons, the so-called Wigner crystal, has long been believed to be the answer. It was in fact the search for the elusive Wigner crystal that led to the discovery of an unexpected, incompressible liquid state, namely the fractional quantum Hall state at $\nu=1/3$. Understanding the competition between the liquid and solid ground states has since remained an active field of fundamental research. Here we report experimental data for a new two-dimensional system where the electrons are confined to an AlAs quantum well. The exceptionally high quality of the samples and the large electron effective mass allow us to determine the liquid-solid phase diagram for the two-dimensional electrons in a large range of filling factors near $\simeq 1/3$ and $\simeq 1/5$. The data and their comparison with an available theoretical phase diagram reveal the crucial role of Landau level mixing and finite electron layer thickness in determining the prevailing ground states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数量子霍尔液体和维格纳固体在小填料下的竞争:层厚和朗道能级混合的作用
二维电子系统(2DES)在非常低的朗道能级填充因子($\nu$)下,相互作用占主导地位,基态的命运是什么?一种有序的电子排列,即所谓的维格纳晶体,长期以来一直被认为是答案。事实上,正是在寻找难以捉摸的维格纳晶体的过程中,人们发现了一种意想不到的、不可压缩的液态,即分数量子霍尔态($\nu=1/3$)。了解液体基态和固体基态之间的竞争一直是基础研究的一个活跃领域。在这里,我们报告了一个新的二维系统的实验数据,其中电子被限制在AlAs量子阱中。样品的高质量和大的电子有效质量使我们能够在$\simeq 1/3$和$\simeq 1/5$附近的大范围填充因子范围内确定二维电子的液固相图。这些数据及其与现有理论相图的比较揭示了朗道能级混合和有限电子层厚度在确定主要基态方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1