{"title":"Determination of processing characteristics of wood materials densified by compressing","authors":"Mustafa Tosun, S. Sofuoglu","doi":"10.4067/s0718-221x2023000100427","DOIUrl":null,"url":null,"abstract":"The main objective of this study is to determine optimum cutting parameters in order to specify the effect of densification by compressing on the processing properties of solid wood material and to achieve the best surface quality in materials densified at different rates. In line with this goal, the widely grown and low-density black poplar ( Populus nigra ) tree species were selected as the experimental material. Samples, which were compressed and densified by Thermo-Mechanical method at 0 %, 20 % and 40 % ratios, were processed at 1000 mm/min, 1500 mm/min and 2000 mm/min feed speeds and in 12000 rpm, 15000 rpm, 18000 rpm rotation speed on a computer numerical control machine by using two different cutters. Surface roughness values ( Ra and Rz ) were measured in order to evaluate surfaces obtained. Smoother surfaces were obtained in computer numerical control machining of densified samples. The lowest surface roughness values occurred in 40 % densified samples, which were the densest. The lowest surface roughness was obtained when 40 % densified samples were processed with cutter no.1 (two-flutes straight end mill), at 1000 mm/min feed speed and at 18000 rpm. Ra and Rz roughness values increased with the increase of the feed rate.","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"32 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2023000100427","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of this study is to determine optimum cutting parameters in order to specify the effect of densification by compressing on the processing properties of solid wood material and to achieve the best surface quality in materials densified at different rates. In line with this goal, the widely grown and low-density black poplar ( Populus nigra ) tree species were selected as the experimental material. Samples, which were compressed and densified by Thermo-Mechanical method at 0 %, 20 % and 40 % ratios, were processed at 1000 mm/min, 1500 mm/min and 2000 mm/min feed speeds and in 12000 rpm, 15000 rpm, 18000 rpm rotation speed on a computer numerical control machine by using two different cutters. Surface roughness values ( Ra and Rz ) were measured in order to evaluate surfaces obtained. Smoother surfaces were obtained in computer numerical control machining of densified samples. The lowest surface roughness values occurred in 40 % densified samples, which were the densest. The lowest surface roughness was obtained when 40 % densified samples were processed with cutter no.1 (two-flutes straight end mill), at 1000 mm/min feed speed and at 18000 rpm. Ra and Rz roughness values increased with the increase of the feed rate.
期刊介绍:
Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.