J. Staudacher, L. Kóczy, Izabella Stach, Jan Filipp, Marcus Kramer, Till Noffke, Linus Olsson, Jonas Pichler, Tobias Singer
{"title":"Computing power indices for weighted voting games via dynamic programming","authors":"J. Staudacher, L. Kóczy, Izabella Stach, Jan Filipp, Marcus Kramer, Till Noffke, Linus Olsson, Jonas Pichler, Tobias Singer","doi":"10.37190/ord210206","DOIUrl":null,"url":null,"abstract":"We study the efficient computation of power indices for weighted voting games using the paradigm of dynamic programming. We survey the state-of-the-art algorithms for computing the Banzhaf and Shapley-Shubik indices and point out how these approaches carry over to related power indices. Within a unified framework, we present new efficient algorithms for the Public Good index and a recently proposed power index based on minimal winning coalitions of smallest size, as well as a very first method for computing Johnston indices for weighted voting games efficiently. We introduce a software package providing fast C++ implementations of all the power indices mentioned in this article, discuss computing times, as well as storage requirements.","PeriodicalId":43244,"journal":{"name":"Operations Research and Decisions","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research and Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ord210206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 4
Abstract
We study the efficient computation of power indices for weighted voting games using the paradigm of dynamic programming. We survey the state-of-the-art algorithms for computing the Banzhaf and Shapley-Shubik indices and point out how these approaches carry over to related power indices. Within a unified framework, we present new efficient algorithms for the Public Good index and a recently proposed power index based on minimal winning coalitions of smallest size, as well as a very first method for computing Johnston indices for weighted voting games efficiently. We introduce a software package providing fast C++ implementations of all the power indices mentioned in this article, discuss computing times, as well as storage requirements.