{"title":"Silver Nanoparticle-Mediated Cellular Responses in Human Keratinocyte Cell Line HaCaT in Vitro","authors":"K. Habas, L. Shang","doi":"10.26524/NR1921","DOIUrl":null,"url":null,"abstract":"The interactions between cells and nanoparticles has been the focus of recent research in the area. The effects of AgNPs on skin cell lines for further potential biological applications are highlighted. This study aimed to investigate the mechanism of cytotoxic and genotoxic effects of AgNPs nanoparticles on human skin keratinocytes (HaCaT). Genocytotoxic effects of AgNPs was assessed using changes in various cellular parameters of HaCaT cells involving viability, superoxide anion radical production, lactate dehydrogenase release and the levels of the antioxidant enzymes, namely, Catalase, Glutathione peroxidase (GPX) and Superoxide Dismutase (SOD). Superoxide anion was detected using nitroblue tetrazolium NBT reduction assay. LDH levels was evaluated using the standard kit, and activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase 1 (GPX-1) and superoxide dismutase 1 (SOD-1) were quantified using qPCR. Our results indicated that AgNPs caused severe HaCaT oxidative damage, accompanied by increased the production of superoxide anion levels as well as significant decrease in endogenous antioxidant enzyme of SOD, CAT, GPX expression involved in HaCat cells in vitro. Our study suggests that AgNPs exposure increased oxidative stress levels. Moreover; the low cytotoxic effect observed on human HaCaT keratinocytes suggested that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.","PeriodicalId":18967,"journal":{"name":"Nanoscale Reports","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26524/NR1921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The interactions between cells and nanoparticles has been the focus of recent research in the area. The effects of AgNPs on skin cell lines for further potential biological applications are highlighted. This study aimed to investigate the mechanism of cytotoxic and genotoxic effects of AgNPs nanoparticles on human skin keratinocytes (HaCaT). Genocytotoxic effects of AgNPs was assessed using changes in various cellular parameters of HaCaT cells involving viability, superoxide anion radical production, lactate dehydrogenase release and the levels of the antioxidant enzymes, namely, Catalase, Glutathione peroxidase (GPX) and Superoxide Dismutase (SOD). Superoxide anion was detected using nitroblue tetrazolium NBT reduction assay. LDH levels was evaluated using the standard kit, and activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase 1 (GPX-1) and superoxide dismutase 1 (SOD-1) were quantified using qPCR. Our results indicated that AgNPs caused severe HaCaT oxidative damage, accompanied by increased the production of superoxide anion levels as well as significant decrease in endogenous antioxidant enzyme of SOD, CAT, GPX expression involved in HaCat cells in vitro. Our study suggests that AgNPs exposure increased oxidative stress levels. Moreover; the low cytotoxic effect observed on human HaCaT keratinocytes suggested that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.