Robust online detection in serially correlated directed network

Miaomiao Yu, Yuhao Zhou, F. Tsung
{"title":"Robust online detection in serially correlated directed network","authors":"Miaomiao Yu, Yuhao Zhou, F. Tsung","doi":"10.1002/nav.22128","DOIUrl":null,"url":null,"abstract":"As the complexity of production processes increases, the diversity of data types drives the development of network monitoring technology. This paper mainly focuses on an online algorithm to detect serially correlated directed networks robustly and sensitively. First, we consider a transition probability matrix to resolve the double correlation of primary data. Further, since the sum of each row of the transition probability matrix is one, it standardizes the data, facilitating subsequent modeling. Then we extend the spring length based method to the multivariate case and propose an adaptive cumulative sum (CUSUM) control chart on the strength of a weighted statistic to monitor directed networks. This novel approach assumes only that the process observation is associated with nearby points without any parametric time series model, which is in line with reality. Simulation results and a real example from metro transportation demonstrate the superiority of our design.","PeriodicalId":19120,"journal":{"name":"Naval Research Logistics (NRL)","volume":"68 1","pages":"735 - 752"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics (NRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nav.22128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As the complexity of production processes increases, the diversity of data types drives the development of network monitoring technology. This paper mainly focuses on an online algorithm to detect serially correlated directed networks robustly and sensitively. First, we consider a transition probability matrix to resolve the double correlation of primary data. Further, since the sum of each row of the transition probability matrix is one, it standardizes the data, facilitating subsequent modeling. Then we extend the spring length based method to the multivariate case and propose an adaptive cumulative sum (CUSUM) control chart on the strength of a weighted statistic to monitor directed networks. This novel approach assumes only that the process observation is associated with nearby points without any parametric time series model, which is in line with reality. Simulation results and a real example from metro transportation demonstrate the superiority of our design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序列相关有向网络鲁棒在线检测
随着生产过程复杂性的增加,数据类型的多样性推动了网络监控技术的发展。本文主要研究一种鲁棒、灵敏地在线检测序列相关有向网络的算法。首先,我们考虑一个转移概率矩阵来解决原始数据的双重相关问题。此外,由于转移概率矩阵每一行之和为1,使得数据标准化,便于后续建模。然后,我们将基于弹簧长度的方法推广到多变量情况,并提出了一种基于加权统计量强度的自适应累积和(CUSUM)控制图来监测有向网络。该方法只假设过程观测值与附近点相关联,不需要任何参数时间序列模型,符合实际情况。仿真结果和地铁实例验证了该设计的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assigning parcel destinations to drop‐off points in a congested robotic sorting system An optimization‐based Monte Carlo method for estimating the two‐terminal survival signature of networks with two component classes A two‐stage adaptive robust model for designing a reliable blood supply chain network with disruption considerations in disaster situations Firm decisions and government subsidies in a supply chain with consumer surplus consideration Optimal emission regulation under market uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1