Enhancing low-temperature electrochemical kinetics and high-temperature cycling stability by decreasing ionic packing factor

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-09-01 DOI:10.1016/j.esci.2023.100179
Changpeng Lv , Chunfu Lin , Xiu Song Zhao
{"title":"Enhancing low-temperature electrochemical kinetics and high-temperature cycling stability by decreasing ionic packing factor","authors":"Changpeng Lv ,&nbsp;Chunfu Lin ,&nbsp;Xiu Song Zhao","doi":"10.1016/j.esci.2023.100179","DOIUrl":null,"url":null,"abstract":"<div><p>Present-day Li<sup>+</sup> storage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability. Herein, based on a Ca<sup>2+</sup> substituted Mg<sub>2</sub>Nb<sub>34</sub>O<sub>87</sub> anode material, we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability. The resulting Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> shows the smallest ionic packing factor among Wadsley–Roth niobate materials. Compared with Mg<sub>2</sub>Nb<sub>34</sub>O<sub>87</sub>, Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> delivers a 1.6 times faster Li​<sup>+</sup> ​diffusivity at −20 ​°C, leading to 56% larger reversible capacity and 1.5 times higher rate capability. Furthermore, Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> exhibits an 11% smaller maximum unit-cell volume expansion upon lithiation at 60 ​°C, resulting in better cyclic stability; at 10C after 500 cycles, it has a 7.1% higher capacity retention, and its reversible capacity at 10C is 57% larger. Therefore, Mg<sub>1.5</sub>Ca<sub>0.5</sub>Nb<sub>34</sub>O<sub>87</sub> is an all-climate anode material capable of working at harsh temperatures, even when its particle sizes are in the order of micrometers.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100179"},"PeriodicalIF":42.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001192/pdfft?md5=1739595186c80c88525cbafbaec4d2a2&pid=1-s2.0-S2667141723001192-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Present-day Li+ storage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability. Herein, based on a Ca2+ substituted Mg2Nb34O87 anode material, we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability. The resulting Mg1.5Ca0.5Nb34O87 shows the smallest ionic packing factor among Wadsley–Roth niobate materials. Compared with Mg2Nb34O87, Mg1.5Ca0.5Nb34O87 delivers a 1.6 times faster Li​+ ​diffusivity at −20 ​°C, leading to 56% larger reversible capacity and 1.5 times higher rate capability. Furthermore, Mg1.5Ca0.5Nb34O87 exhibits an 11% smaller maximum unit-cell volume expansion upon lithiation at 60 ​°C, resulting in better cyclic stability; at 10C after 500 cycles, it has a 7.1% higher capacity retention, and its reversible capacity at 10C is 57% larger. Therefore, Mg1.5Ca0.5Nb34O87 is an all-climate anode material capable of working at harsh temperatures, even when its particle sizes are in the order of micrometers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过降低离子填充系数提高低温电化学动力学和高温循环稳定性
目前的锂离子存储材料普遍存在低温电化学动力学迟钝和高温循环稳定性差的问题。基于Ca2+取代的Mg2Nb34O87阳极材料,我们证明了降低离子填充因子是提高低温电化学动力学和高温循环稳定性的双重策略。所得Mg1.5Ca0.5Nb34O87在Wadsley-Roth铌酸盐材料中表现出最小的离子填充因子。与Mg2Nb34O87相比,Mg1.5Ca0.5Nb34O87在−20°C下的Li +扩散率提高了1.6倍,可逆容量提高了56%,速率能力提高了1.5倍。此外,Mg1.5Ca0.5Nb34O87在60℃锂化时,最大单胞体积膨胀减小11%,循环稳定性更好;在10C循环500次后,其容量保持率提高了7.1%,其可逆容量在10C时提高了57%。因此,Mg1.5Ca0.5Nb34O87是一种能够在恶劣温度下工作的全气候阳极材料,即使其粒径在微米量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1