Subtle Motif Discovery for Detection of DNA Regulatory Sites

M. Comin, L. Parida
{"title":"Subtle Motif Discovery for Detection of DNA Regulatory Sites","authors":"M. Comin, L. Parida","doi":"10.1142/9781860947995_0006","DOIUrl":null,"url":null,"abstract":"We address the problem of detecting consensus motifs, that occur with subtle variations, across multiple sequences. These are usually functional domains in DNA sequences such as transcriptional binding factors or other regulatory sites. The problem in its generality has been considered difficult and various benchmark data serve as the litmus test for different computational methods. We present a method centered around unsupervised combinatorial pattern discovery. The parameters are chosen using a careful statistical analysis of consensus motifs. This method works well on the benchmark data and is general enough to be extended to a scenario where the variation in the consensus motif includes indels (along with mutations). We also present some results on detection of transcription binding factors in human DNA sequences. Availability: The system will be made available at www.research.ibm.com/computationalgenomics.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"44 1","pages":"27-36"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We address the problem of detecting consensus motifs, that occur with subtle variations, across multiple sequences. These are usually functional domains in DNA sequences such as transcriptional binding factors or other regulatory sites. The problem in its generality has been considered difficult and various benchmark data serve as the litmus test for different computational methods. We present a method centered around unsupervised combinatorial pattern discovery. The parameters are chosen using a careful statistical analysis of consensus motifs. This method works well on the benchmark data and is general enough to be extended to a scenario where the variation in the consensus motif includes indels (along with mutations). We also present some results on detection of transcription binding factors in human DNA sequences. Availability: The system will be made available at www.research.ibm.com/computationalgenomics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测DNA调控位点的微妙基序发现
我们解决了检测共识母题的问题,这些母题发生在多个序列的微妙变化中。这些通常是DNA序列中的功能域,如转录结合因子或其他调节位点。这个问题的普遍性一直被认为是困难的,各种基准数据可以作为不同计算方法的试金石。我们提出了一种以无监督组合模式发现为中心的方法。参数是通过对共识母题进行仔细的统计分析来选择的。该方法在基准数据上工作得很好,并且足够通用,可以扩展到共识基元中的变化包括索引(以及突变)的场景。我们还介绍了在人类DNA序列中检测转录结合因子的一些结果。可用性:该系统将在www.research.ibm.com/computationalgenomics上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1