Application of Pixel Intensity Based Medical Image Segmentation Using NSGA II Based Opti MUSIG Activation Function

S. De, S. Bhattacharyya, Susanta Chakraborty
{"title":"Application of Pixel Intensity Based Medical Image Segmentation Using NSGA II Based Opti MUSIG Activation Function","authors":"S. De, S. Bhattacharyya, Susanta Chakraborty","doi":"10.1109/CICN.2014.67","DOIUrl":null,"url":null,"abstract":"Medical image segmentation is a challenging task for analyzing the magnetic resonance (MRI) images. These type of images contain missing or diffuse organ/tissue boundaries due to poor image contrast. Medical image segmentation can be addressed effectively by genetic algorithms (GAs). In this article, an application of pixel intensity based medical image segmentation is presented by the non-dominated sorting genetic algorithm-II (NSGA II) based optimized MUSIG (Opti MUSIG) activation function with a multilayer self organizing neural network (MLSONN) architecture. This method is compared with the process of medical image segmentation by the MUSIG activation function with the MLSONN architecture. Both the methods are applied on two real life MRI images. The comparison shows that NSGA II based Opti MUSIG activation function performs better medical image segmentation than the MUSIG activation function based method.","PeriodicalId":6487,"journal":{"name":"2014 International Conference on Computational Intelligence and Communication Networks","volume":"15 1","pages":"262-267"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2014.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Medical image segmentation is a challenging task for analyzing the magnetic resonance (MRI) images. These type of images contain missing or diffuse organ/tissue boundaries due to poor image contrast. Medical image segmentation can be addressed effectively by genetic algorithms (GAs). In this article, an application of pixel intensity based medical image segmentation is presented by the non-dominated sorting genetic algorithm-II (NSGA II) based optimized MUSIG (Opti MUSIG) activation function with a multilayer self organizing neural network (MLSONN) architecture. This method is compared with the process of medical image segmentation by the MUSIG activation function with the MLSONN architecture. Both the methods are applied on two real life MRI images. The comparison shows that NSGA II based Opti MUSIG activation function performs better medical image segmentation than the MUSIG activation function based method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于NSGA II的Opti MUSIG激活函数在医学图像像素强度分割中的应用
医学图像分割是磁共振(MRI)图像分析中一项具有挑战性的任务。由于图像对比度差,此类图像包含缺失或弥漫性器官/组织边界。遗传算法可以有效地解决医学图像分割问题。本文提出了一种基于多层自组织神经网络(MLSONN)结构的非支配排序遗传算法-II (NSGA II)优化MUSIG (Opti MUSIG)激活函数在基于像素强度的医学图像分割中的应用。将该方法与基于MLSONN结构的MUSIG激活函数的医学图像分割过程进行了比较。这两种方法都应用于两个真实的MRI图像。对比表明,基于NSGA II的Opti MUSIG激活函数比基于MUSIG激活函数的方法具有更好的医学图像分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Flow Control of all Vanadium Flow Battery Energy Storage Based on Fuzzy Algorithm Synthetic Aperture Radar System Using Digital Chirp Signal Generator Based on the Piecewise Higher Order Polynomial Interpolation Technique Frequency-Domain Equalization for E-Band Transmission System A Mean-Semi-variance Portfolio Optimization Model with Full Transaction Costs Detailed Evaluation of DEM Interpolation Methods in GIS Using DGPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1