M. Gasper, R. Toonen, S. Hirsch, M. Ivill, H. Richter, R. Sivarajan
{"title":"Uncooled radio frequency bolometer based on carbon nanotube thin films","authors":"M. Gasper, R. Toonen, S. Hirsch, M. Ivill, H. Richter, R. Sivarajan","doi":"10.1109/MWSYM.2016.7540291","DOIUrl":null,"url":null,"abstract":"Carbon nanotube thin films deposited on sapphire substrates have been used to realize a microwave power sensor that operates at and above room temperature. The detector includes a power-sensitive resistor that has been incorporated into a voltage divider circuit. Using lock-in detection, experiments were performed with 915 MHz test signals that showed detection down to -45 dBm. A sensitivity of 0.36mV/mW was achieved with the device held at a temperature of 15°C. Additional experiments (which included static and pulsed current versus voltage measurements) indicate that the primary physical mechanism responsible for power detection near room temperature is Joule heating.","PeriodicalId":6554,"journal":{"name":"2016 IEEE MTT-S International Microwave Symposium (IMS)","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2016.7540291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Carbon nanotube thin films deposited on sapphire substrates have been used to realize a microwave power sensor that operates at and above room temperature. The detector includes a power-sensitive resistor that has been incorporated into a voltage divider circuit. Using lock-in detection, experiments were performed with 915 MHz test signals that showed detection down to -45 dBm. A sensitivity of 0.36mV/mW was achieved with the device held at a temperature of 15°C. Additional experiments (which included static and pulsed current versus voltage measurements) indicate that the primary physical mechanism responsible for power detection near room temperature is Joule heating.