Hyunjun Jang, Baik Song An, Nikhil Kulkarni, K. H. Yum, Eun Jung Kim
{"title":"A Hybrid Buffer Design with STT-MRAM for On-Chip Interconnects","authors":"Hyunjun Jang, Baik Song An, Nikhil Kulkarni, K. H. Yum, Eun Jung Kim","doi":"10.1109/NOCS.2012.30","DOIUrl":null,"url":null,"abstract":"As the chip multiprocessor (CMP) design moves toward many-core architectures, communication delay in Network-on-Chip (NoC) has been a major bottleneck in CMP systems. Using high-density memories in input buffers helps to reduce the bottleneck through increasing throughput. Spin-Torque Transfer Magnetic RAM (STT-MRAM) can be a suitable solution due to its nature of high density and near-zero leakage power. But its long latency and high power consumption in write operations still need to be addressed. We explore the design issues in using STT-MRAM for NoC input buffers. Motivated by short intra-router latency, we use the previously proposed write latency reduction technique sacrificing retention time. Then we propose a hybrid design of input buffers using both SRAM and STT-MRAM to hide the long write latency efficiently. Considering that simple data migration in the hybrid buffer consumes more dynamic power compared to SRAM, we provide a lazy migration scheme that reduces the dynamic power consumption of the hybrid buffer. Simulation results show that the proposed scheme enhances the throughput by 21% on average.","PeriodicalId":6333,"journal":{"name":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","volume":"13 1","pages":"193-200"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOCS.2012.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
As the chip multiprocessor (CMP) design moves toward many-core architectures, communication delay in Network-on-Chip (NoC) has been a major bottleneck in CMP systems. Using high-density memories in input buffers helps to reduce the bottleneck through increasing throughput. Spin-Torque Transfer Magnetic RAM (STT-MRAM) can be a suitable solution due to its nature of high density and near-zero leakage power. But its long latency and high power consumption in write operations still need to be addressed. We explore the design issues in using STT-MRAM for NoC input buffers. Motivated by short intra-router latency, we use the previously proposed write latency reduction technique sacrificing retention time. Then we propose a hybrid design of input buffers using both SRAM and STT-MRAM to hide the long write latency efficiently. Considering that simple data migration in the hybrid buffer consumes more dynamic power compared to SRAM, we provide a lazy migration scheme that reduces the dynamic power consumption of the hybrid buffer. Simulation results show that the proposed scheme enhances the throughput by 21% on average.