Alexandre Ambiehl, S. Garnier, Kévin Subrin, B. Furet
{"title":"New method for decoupling the articular stiffness identification: Application to an industrial robot with double encoding system on its 3 first axis","authors":"Alexandre Ambiehl, S. Garnier, Kévin Subrin, B. Furet","doi":"10.1109/IROS.2017.8205950","DOIUrl":null,"url":null,"abstract":"In order to be able to perform complex and arduous tasks, stiffness articular identification of industrial robots is a current approach to predict the deflection under static or dynamic loading. Manufacturers propose new features to take the loading into account and a new generation of industrial robot equiped with double encoding systems are proposed. However, current methods brings some drawbacks when the ratio between the stiffness arm and the wrist one is too high. In this paper, we propose a new approach to take this aspect into account by decoupling the arm identification and the wrist one. We compare then our method regarding two current methods and applied it on this new industrial robot. The results highligh the stability and the quality of the stiffness articular estimation with and without activating the double encoding system. On our data, we are able to take into account 84% of the global deflection.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"22 1","pages":"1478-1483"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8205950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In order to be able to perform complex and arduous tasks, stiffness articular identification of industrial robots is a current approach to predict the deflection under static or dynamic loading. Manufacturers propose new features to take the loading into account and a new generation of industrial robot equiped with double encoding systems are proposed. However, current methods brings some drawbacks when the ratio between the stiffness arm and the wrist one is too high. In this paper, we propose a new approach to take this aspect into account by decoupling the arm identification and the wrist one. We compare then our method regarding two current methods and applied it on this new industrial robot. The results highligh the stability and the quality of the stiffness articular estimation with and without activating the double encoding system. On our data, we are able to take into account 84% of the global deflection.