A multivariable sliding mode predictive control method for the air management system of automotive fuel cells

Duo Yang, Hanwen Fu, Junjun Li, Siyu Wang
{"title":"A multivariable sliding mode predictive control method for the air management system of automotive fuel cells","authors":"Duo Yang, Hanwen Fu, Junjun Li, Siyu Wang","doi":"10.1177/00202940231195129","DOIUrl":null,"url":null,"abstract":"The proton exchange membrane fuel cell gas control has been one key point in fuel cell management systems. The complexity and coupling of the air management system make it difficult to achieve precise air intake adjustment. In this paper, an accurate joint control method for the air flow and pressure regulation is proposed. The nonlinear mathematical model of the air management system is developed to describe the output characteristic and state change. Based on this, the feedback linearization method is proposed to obtain the direct correspondence between control variables and controlled variables. In addition, to solve the problem that the controlled variables cannot be measured directly, an extended state observer is applied to estimate the stack cathode pressure. The sliding mode predictive control method is proposed to control the oxygen excess ratio and cathode pressure simultaneously. The relative order of the system is used to design the sliding mode surface, and the corresponding predictive model is proposed. The results obtained by simulation experiments show that pressure and mass flow have little effect on each other through decoupling. The proposed algorithm has been verified to have high precision, fast response, and robustness through comparative experiments.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231195129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proton exchange membrane fuel cell gas control has been one key point in fuel cell management systems. The complexity and coupling of the air management system make it difficult to achieve precise air intake adjustment. In this paper, an accurate joint control method for the air flow and pressure regulation is proposed. The nonlinear mathematical model of the air management system is developed to describe the output characteristic and state change. Based on this, the feedback linearization method is proposed to obtain the direct correspondence between control variables and controlled variables. In addition, to solve the problem that the controlled variables cannot be measured directly, an extended state observer is applied to estimate the stack cathode pressure. The sliding mode predictive control method is proposed to control the oxygen excess ratio and cathode pressure simultaneously. The relative order of the system is used to design the sliding mode surface, and the corresponding predictive model is proposed. The results obtained by simulation experiments show that pressure and mass flow have little effect on each other through decoupling. The proposed algorithm has been verified to have high precision, fast response, and robustness through comparative experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车燃料电池空气管理系统的多变量滑模预测控制方法
质子交换膜燃料电池气体控制一直是燃料电池管理系统中的一个关键环节。空气管理系统的复杂性和耦合性使其难以实现精确的进气调节。本文提出了一种精确的空气流量和压力调节联合控制方法。建立了描述空气管理系统输出特性和状态变化的非线性数学模型。在此基础上,提出了反馈线性化方法,以获得控制变量与被控变量之间的直接对应关系。此外,为了解决控制变量不能直接测量的问题,采用扩展状态观测器对堆阴极压力进行估计。提出了滑模预测控制方法,同时控制氧过剩比和阴极压力。利用系统的相对阶数设计了滑模曲面,并建立了相应的预测模型。仿真实验结果表明,通过解耦,压力和质量流量之间的相互影响很小。通过对比实验验证了该算法精度高、响应速度快、鲁棒性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1