V. Mandailina, S. Syaharuddin, Dewi Pramita, M. Ibrahim, H. R. P. Negara
{"title":"Wilkinson Polynomials: Accuracy Analysis Based on Numerical Methods of the Taylor Series Derivative","authors":"V. Mandailina, S. Syaharuddin, Dewi Pramita, M. Ibrahim, H. R. P. Negara","doi":"10.24042/DJM.V3I2.6134","DOIUrl":null,"url":null,"abstract":"Some of the numeric methods for solutions of non-linear equations are taken from a derivative of the Taylor series, one of which is the Newton-Raphson method. However, this is not the only method for solving cases of non-linear equations. The purpose of the study is to compare the accuracy of several derivative methods of the Taylor series of both single order and two-order derivatives, namely Newton-Raphson method, Halley method, Olver method, Euler method, Chebyshev method, and Newton Midpoint Halley method. This research includes qualitative comparison types, where the simulation results of each method are described based on the comparison results. These six methods are simulated with the Wilkinson equation which is a 20-degree polynomial. The accuracy parameters used are the number of iterations, the roots of the equation, the function value f (x), and the error. Results showed that the Newton Midpoint Halley method was the most accurate method. This result is derived from the test starting point value of 0.5 to the equation root x = 1, completed in 3 iterations with a maximum error of 0.0001. The computational design and simulation of this iterative method which is a derivative of the two-order Taylor series is rarely found in college studies as it still rests on the Newton-Raphson method, so the results of this study can be recommended in future learning.","PeriodicalId":11442,"journal":{"name":"Dwight's Journal of Music","volume":"54 1","pages":"155-160"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dwight's Journal of Music","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24042/DJM.V3I2.6134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Some of the numeric methods for solutions of non-linear equations are taken from a derivative of the Taylor series, one of which is the Newton-Raphson method. However, this is not the only method for solving cases of non-linear equations. The purpose of the study is to compare the accuracy of several derivative methods of the Taylor series of both single order and two-order derivatives, namely Newton-Raphson method, Halley method, Olver method, Euler method, Chebyshev method, and Newton Midpoint Halley method. This research includes qualitative comparison types, where the simulation results of each method are described based on the comparison results. These six methods are simulated with the Wilkinson equation which is a 20-degree polynomial. The accuracy parameters used are the number of iterations, the roots of the equation, the function value f (x), and the error. Results showed that the Newton Midpoint Halley method was the most accurate method. This result is derived from the test starting point value of 0.5 to the equation root x = 1, completed in 3 iterations with a maximum error of 0.0001. The computational design and simulation of this iterative method which is a derivative of the two-order Taylor series is rarely found in college studies as it still rests on the Newton-Raphson method, so the results of this study can be recommended in future learning.