Estimation of extended mixed models using latent classes and latent processes: the R package lcmm

C. Proust-Lima, V. Philipps, B. Liquet
{"title":"Estimation of extended mixed models using latent classes and latent processes: the R package lcmm","authors":"C. Proust-Lima, V. Philipps, B. Liquet","doi":"10.18637/jss.v078.i02","DOIUrl":null,"url":null,"abstract":"The R package lcmm provides a series of functions to estimate statistical models based on linear mixed model theory. It includes the estimation of mixed models and latent class mixed models for Gaussian longitudinal outcomes (hlme), curvilinear and ordinal univariate longitudinal outcomes (lcmm) and curvilinear multivariate outcomes (multlcmm), as well as joint latent class mixed models (Jointlcmm) for a (Gaussian or curvilinear) longitudinal outcome and a time-to-event that can be possibly left-truncated right-censored and defined in a competing setting. Maximum likelihood esimators are obtained using a modified Marquardt algorithm with strict convergence criteria based on the parameters and likelihood stability, and on the negativity of the second derivatives. The package also provides various post-fit functions including goodness-of-fit analyses, classification, plots, predicted trajectories, individual dynamic prediction of the event and predictive accuracy assessment. This paper constitutes a companion paper to the package by introducing each family of models, the estimation technique, some implementation details and giving examples through a dataset on cognitive aging.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"543","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v078.i02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 543

Abstract

The R package lcmm provides a series of functions to estimate statistical models based on linear mixed model theory. It includes the estimation of mixed models and latent class mixed models for Gaussian longitudinal outcomes (hlme), curvilinear and ordinal univariate longitudinal outcomes (lcmm) and curvilinear multivariate outcomes (multlcmm), as well as joint latent class mixed models (Jointlcmm) for a (Gaussian or curvilinear) longitudinal outcome and a time-to-event that can be possibly left-truncated right-censored and defined in a competing setting. Maximum likelihood esimators are obtained using a modified Marquardt algorithm with strict convergence criteria based on the parameters and likelihood stability, and on the negativity of the second derivatives. The package also provides various post-fit functions including goodness-of-fit analyses, classification, plots, predicted trajectories, individual dynamic prediction of the event and predictive accuracy assessment. This paper constitutes a companion paper to the package by introducing each family of models, the estimation technique, some implementation details and giving examples through a dataset on cognitive aging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用潜类和潜过程的扩展混合模型估计:R包lcmm
R包lcmm提供了一系列基于线性混合模型理论的统计模型估计函数。它包括高斯纵向结果(hlme)的混合模型和潜在类别混合模型的估计,曲线和有序单变量纵向结果(lcmm)和曲线多变量结果(multlcmm),以及(高斯或曲线)纵向结果的联合潜在类别混合模型(Jointlcmm)和可能被左截断右截短并在竞争环境中定义的事件时间。利用改进的Marquardt算法得到极大似然估计,该算法具有严格的收敛准则,基于参数和似然稳定性以及二阶导数的负性。该软件包还提供各种后拟合功能,包括拟合优度分析、分类、绘图、预测轨迹、事件的个体动态预测和预测准确性评估。本文通过一个关于认知老化的数据集,介绍了每个模型族、估计技术、一些实现细节和示例,构成了该包的配套论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1