{"title":"Online learning for human classification in 3D LiDAR-based tracking","authors":"Zhi Yan, T. Duckett, N. Bellotto","doi":"10.1109/IROS.2017.8202247","DOIUrl":null,"url":null,"abstract":"Human detection and tracking are essential aspects to be considered in service robotics, as the robot often shares its workspace and interacts closely with humans. This paper presents an online learning framework for human classification in 3D LiDAR scans, taking advantage of robust multi-target tracking to avoid the need for data annotation by a human expert. The system learns iteratively by retraining a classifier online with the samples collected by the robot over time. A novel aspect of our approach is that errors in training data can be corrected using the information provided by the 3D LiDAR-based tracking. In order to do this, an efficient 3D cluster detector of potential human targets has been implemented. We evaluate the framework using a new 3D LiDAR dataset of people moving in a large indoor public space, which is made available to the research community. The experiments analyse the real-time performance of the cluster detector and show that our online learned human classifier matches and in some cases outperforms its offline version.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"52 1","pages":"864-871"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8202247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92
Abstract
Human detection and tracking are essential aspects to be considered in service robotics, as the robot often shares its workspace and interacts closely with humans. This paper presents an online learning framework for human classification in 3D LiDAR scans, taking advantage of robust multi-target tracking to avoid the need for data annotation by a human expert. The system learns iteratively by retraining a classifier online with the samples collected by the robot over time. A novel aspect of our approach is that errors in training data can be corrected using the information provided by the 3D LiDAR-based tracking. In order to do this, an efficient 3D cluster detector of potential human targets has been implemented. We evaluate the framework using a new 3D LiDAR dataset of people moving in a large indoor public space, which is made available to the research community. The experiments analyse the real-time performance of the cluster detector and show that our online learned human classifier matches and in some cases outperforms its offline version.