Trend Analysis of Hydro-climatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa

IF 0.6 Q4 DEVELOPMENT STUDIES Journal of Rural and Community Development Pub Date : 2020-06-09 DOI:10.12691/AJRD-8-1-5
H. D. Koubodana, J. Adounkpe, Moustapha Tall, E. Amoussou, K. Atchonouglo, Muhammad Mumtaz
{"title":"Trend Analysis of Hydro-climatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa","authors":"H. D. Koubodana, J. Adounkpe, Moustapha Tall, E. Amoussou, K. Atchonouglo, Muhammad Mumtaz","doi":"10.12691/AJRD-8-1-5","DOIUrl":null,"url":null,"abstract":"Climate change impacts considerably on water balance components and needs to be evaluated through trend analysis or climate models scenarios extremes. The objective of this paper is to perform non-parametric Mann Kendall (MK) trend analysis on historical hydro-climatic data (1961-2016), to validate an ensemble climate model and to compute temperature and rainfall extremes indices. The climate indices are evaluated using MK test and annual trend analysis for two future scenarios (2020- 2045) over Mono River Basin (MRB) in Togo. Results show positive and negative trends of hydro-climatic data over MRB from 1961 to 2016. The average temperature increases significantly in most of the stations while a negative non-significant trend of rainfall is noticed. Meanwhile, the discharge presents a significant seasonal and annual trend Corrokope, Nangbeto and Athieme gauge stations. Validation of the ensemble climate models reveals that the model under-estimates observations at Sokode, Atkakpame and Tabligbo stations, however linear regression and spatial correlation coefficients are higher than 0.6. Moreover, the percentage of bias between climate model and observations are less than 15% at most of the stations. Finally, the computation of extreme climate indices under RCP4.5 and RCP8.5 scenarios shows a significant annual trend of some extreme climate indices of rainfall and temperature at selected stations between 2020 and 2045 in the MRB. Therefore, relevant governmental politics are needed to elaborate strategies and measures to cope with projected climate changes impacts in the country.","PeriodicalId":45379,"journal":{"name":"Journal of Rural and Community Development","volume":"37 1","pages":"37-52"},"PeriodicalIF":0.6000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rural and Community Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/AJRD-8-1-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENT STUDIES","Score":null,"Total":0}
引用次数: 10

Abstract

Climate change impacts considerably on water balance components and needs to be evaluated through trend analysis or climate models scenarios extremes. The objective of this paper is to perform non-parametric Mann Kendall (MK) trend analysis on historical hydro-climatic data (1961-2016), to validate an ensemble climate model and to compute temperature and rainfall extremes indices. The climate indices are evaluated using MK test and annual trend analysis for two future scenarios (2020- 2045) over Mono River Basin (MRB) in Togo. Results show positive and negative trends of hydro-climatic data over MRB from 1961 to 2016. The average temperature increases significantly in most of the stations while a negative non-significant trend of rainfall is noticed. Meanwhile, the discharge presents a significant seasonal and annual trend Corrokope, Nangbeto and Athieme gauge stations. Validation of the ensemble climate models reveals that the model under-estimates observations at Sokode, Atkakpame and Tabligbo stations, however linear regression and spatial correlation coefficients are higher than 0.6. Moreover, the percentage of bias between climate model and observations are less than 15% at most of the stations. Finally, the computation of extreme climate indices under RCP4.5 and RCP8.5 scenarios shows a significant annual trend of some extreme climate indices of rainfall and temperature at selected stations between 2020 and 2045 in the MRB. Therefore, relevant governmental politics are needed to elaborate strategies and measures to cope with projected climate changes impacts in the country.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西非Mono河流域水文气候历史数据趋势分析及气候极端指数未来情景
气候变化对水平衡成分的影响很大,需要通过趋势分析或气候模式来评估极端情景。本文的目的是对历史水文气候数据(1961-2016)进行非参数Mann - Kendall (MK)趋势分析,验证集合气候模型,并计算温度和降雨极端指数。利用MK检验和年趋势分析对多哥Mono河流域(MRB)未来两种情景(2020- 2045)的气候指数进行了评价。结果表明,1961 ~ 2016年MRB水文气候数据呈现正、负趋势。大部分台站的平均气温显著上升,而降雨量呈负的非显著趋势。同时,在锈蚀、南贝托和阿提姆等监测站,流量具有明显的季节和年变化趋势。对集合气候模式的验证表明,模型低估了Sokode、Atkakpame和Tabligbo站的观测值,但线性回归系数和空间相关系数均大于0.6。此外,在大多数台站,气候模式与观测值之间的偏差百分比小于15%。最后,RCP4.5和RCP8.5情景下的极端气候指数计算结果表明,2020 - 2045年,MRB中部分站点的降水和温度极端气候指数具有显著的年变化趋势。因此,需要相关的政府政策来制定战略和措施,以应对预计的气候变化对该国的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
16.70%
发文量
0
期刊最新文献
Community Development from the Lens of Social Capital: A Sociological Study of Rupa Rural Municipality of Kaski, Nepal Penyuluhan Standar Produksi Ayam Petelur Jantan pada Kelompok Ternak Nawawi Farm Pengembangan dan Pemanfaatan Desain Kemasan sebagai Media Promosi pada UKM Heavenine Capital Structure, Asset Structure and Profitability of Rural Women Micro Enterprises in Kerala Trend Analysis of Hydro-climatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1