Design and Analysis of Optimization Algorithms Using Computational Statistics

T. Bartz–Beielstein, K. E. Parsopoulos, M. N. Vrahatis
{"title":"Design and Analysis of Optimization Algorithms Using Computational Statistics","authors":"T. Bartz–Beielstein,&nbsp;K. E. Parsopoulos,&nbsp;M. N. Vrahatis","doi":"10.1002/anac.200410007","DOIUrl":null,"url":null,"abstract":"<p>We propose a highly flexible sequential methodology for the experimental analysis of optimization algorithms. The proposed technique employs computational statistic methods to investigate the interactions among optimization problems, algorithms, and environments. The workings of the proposed technique are illustrated on the parameterization and comparison of both a population–based and a direct search algorithm, on a well–known benchmark problem, as well as on a simplified model of a real–world problem. Experimental results are reported and conclusions are derived. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"413-433"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410007","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

We propose a highly flexible sequential methodology for the experimental analysis of optimization algorithms. The proposed technique employs computational statistic methods to investigate the interactions among optimization problems, algorithms, and environments. The workings of the proposed technique are illustrated on the parameterization and comparison of both a population–based and a direct search algorithm, on a well–known benchmark problem, as well as on a simplified model of a real–world problem. Experimental results are reported and conclusions are derived. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算统计学的优化算法设计与分析
我们提出了一个高度灵活的顺序方法,优化算法的实验分析。该技术采用计算统计方法来研究优化问题、算法和环境之间的相互作用。在一个众所周知的基准问题上,以及在一个现实世界问题的简化模型上,对基于种群的和直接搜索算法的参数化和比较,说明了所提出的技术的工作原理。报道了实验结果并得出了结论。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods Analytic Evaluation of Collocation Integrals for the Radiosity Equation A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems Solving Hyperbolic PDEs in MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1