{"title":"Physical Optics Radar Cross Section predictions for an anti-ship cruise missile","authors":"Panagiotis Touzopoulos, K. Zikidis","doi":"10.1177/15485129211033039","DOIUrl":null,"url":null,"abstract":"The capability of the first strike is crucial in the modern battlefield. An important parameter is the radar signature or Radar Cross Section (RCS) of a weapon system, such as a fighter aircraft, a warship, or a missile, affecting the range at which this weapon system would be detected as a target by an enemy radar. If the attacker is detected too late, there will be minimal time for the defender to react, possibly not sufficient to counter the threat. The RCS of a weapon system is considered generally as classified information. However, it can be measured at a suitable measurement test range, if that weapon system is available. Otherwise, it can be predicted with the help of computational electromagnetics. Concerning the second approach, the following procedure was recently proposed: construction of a three-dimensional model of a target, based on available images and any relevant data, and then computation of the target RCS, with the Physical Optics approximative method. In the present approach, this procedure is applied to an anti-ship cruise missile in order to compute its RCS. Finally, the expected detection range for various naval radars is calculated.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211033039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The capability of the first strike is crucial in the modern battlefield. An important parameter is the radar signature or Radar Cross Section (RCS) of a weapon system, such as a fighter aircraft, a warship, or a missile, affecting the range at which this weapon system would be detected as a target by an enemy radar. If the attacker is detected too late, there will be minimal time for the defender to react, possibly not sufficient to counter the threat. The RCS of a weapon system is considered generally as classified information. However, it can be measured at a suitable measurement test range, if that weapon system is available. Otherwise, it can be predicted with the help of computational electromagnetics. Concerning the second approach, the following procedure was recently proposed: construction of a three-dimensional model of a target, based on available images and any relevant data, and then computation of the target RCS, with the Physical Optics approximative method. In the present approach, this procedure is applied to an anti-ship cruise missile in order to compute its RCS. Finally, the expected detection range for various naval radars is calculated.