Field emission from carbon nanotubes in air

Q. Zou, M. Wang, Y. Li, L. Zou, Y. C. Zhao
{"title":"Field emission from carbon nanotubes in air","authors":"Q. Zou, M. Wang, Y. Li, L. Zou, Y. C. Zhao","doi":"10.1080/10519990903283500","DOIUrl":null,"url":null,"abstract":"The properties of the field emission (FE) from multi-walled carbon nanotubes (CNTs) in air used to generate the microplasma at near-atmospheric pressure were investigated in a removable gas cell built into a scanning electron microscope. The gaps between the electrodes were adjusted from 5 to 100 μm and the pressure was changed from 0 to 100 kPa. The obtained results have shown that the FE properties of the CNTs at 10 kPa and lower pressures were the same as those in vacuum. At a pressure more than 10 kPa, the FE threshold voltage in air was higher than those in vacuum, and increased with increasing atmospheric pressure. When the FE threshold voltage became higher than that of the gas breakdown, the microplasma was ignited before the FE initiation. Thus, the FE properties of the CNTs in air were stable when the FE potential was lower than the voltage of conventional gas discharge with CNT cathode.","PeriodicalId":54600,"journal":{"name":"Plasma Devices and Operations","volume":"36 1","pages":"286 - 292"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Devices and Operations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10519990903283500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The properties of the field emission (FE) from multi-walled carbon nanotubes (CNTs) in air used to generate the microplasma at near-atmospheric pressure were investigated in a removable gas cell built into a scanning electron microscope. The gaps between the electrodes were adjusted from 5 to 100 μm and the pressure was changed from 0 to 100 kPa. The obtained results have shown that the FE properties of the CNTs at 10 kPa and lower pressures were the same as those in vacuum. At a pressure more than 10 kPa, the FE threshold voltage in air was higher than those in vacuum, and increased with increasing atmospheric pressure. When the FE threshold voltage became higher than that of the gas breakdown, the microplasma was ignited before the FE initiation. Thus, the FE properties of the CNTs in air were stable when the FE potential was lower than the voltage of conventional gas discharge with CNT cathode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空气中碳纳米管的场发射
研究了近大气压下多壁碳纳米管(CNTs)在空气中产生微等离子体的场发射特性。电极间距从5 μm调整到100 μm,压力从0调整到100 kPa。结果表明,在10 kPa和更低压力下,CNTs的FE性能与真空中相同。当压力大于10 kPa时,空气中的FE阈值电压高于真空中的FE阈值电压,且随着大气压的增加而升高。当FE阈值电压高于气体击穿阈值电压时,微等离子体在FE起始前被点燃。因此,当FE电位低于常规碳纳米管阴极气体放电电压时,CNTs在空气中的FE性能是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Devices and Operations
Plasma Devices and Operations 物理-核科学技术
自引率
0.00%
发文量
0
期刊最新文献
Merger announcement Preliminary plasma focus studies at ODAK-3K device using track detectors Stray magnetic field produced by ITER tokamak complex Generation of degenerate modes in suddenly created cold weakly nonlinear magnetized plasma Investigations of mirrors for ITER diagnostics in modern fusion devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1