Hardware design of a Binary Integer Decimal-based floating-point adder

C. Tsen, S. González-Navarro, M. Schulte
{"title":"Hardware design of a Binary Integer Decimal-based floating-point adder","authors":"C. Tsen, S. González-Navarro, M. Schulte","doi":"10.1109/ICCD.2007.4601915","DOIUrl":null,"url":null,"abstract":"Because of the growing importance of decimal floating-point (DFP) arithmetic, specifications for it are included in the IEEE Draft Standard for Floating-point Arithmetic (IEEE P754). In this paper, we present a novel algorithm and hardware design for a DFP adder. The adder performs addition and subtraction on 64-bit operands that use the IEEE P754 binary encoding of DFP numbers, widely known as the binary integer decimal (BID) encoding. The BID adder uses a novel hardware component for decimal digit counting and an enhanced version of a previously published BID rounding unit. By adding more sophisticated control, operations are performed with variable latency to optimize for common cases. We show that a BID-based DFP adder design can be achieved with a modest area increase compared to a single 2-stage pipelined 64-bit fixed-point multiplier. Over 70% of the BID adderpsilas area is due the 64-bit fixed-point multiplier, which can be shared with a binary floating-point multiplier and hardware for other DFP operations. To our knowledge, this is the first hardware design for adding and subtracting IEEE P754 BID-encoded DFP numbers.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"18 1","pages":"288-295"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Because of the growing importance of decimal floating-point (DFP) arithmetic, specifications for it are included in the IEEE Draft Standard for Floating-point Arithmetic (IEEE P754). In this paper, we present a novel algorithm and hardware design for a DFP adder. The adder performs addition and subtraction on 64-bit operands that use the IEEE P754 binary encoding of DFP numbers, widely known as the binary integer decimal (BID) encoding. The BID adder uses a novel hardware component for decimal digit counting and an enhanced version of a previously published BID rounding unit. By adding more sophisticated control, operations are performed with variable latency to optimize for common cases. We show that a BID-based DFP adder design can be achieved with a modest area increase compared to a single 2-stage pipelined 64-bit fixed-point multiplier. Over 70% of the BID adderpsilas area is due the 64-bit fixed-point multiplier, which can be shared with a binary floating-point multiplier and hardware for other DFP operations. To our knowledge, this is the first hardware design for adding and subtracting IEEE P754 BID-encoded DFP numbers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二进制整数十进制的浮点加法器的硬件设计
由于十进制浮点(DFP)算法的重要性日益增加,它的规范被包含在IEEE浮点算术标准草案(IEEE P754)中。本文提出了一种DFP加法器的新算法和硬件设计。加法器对使用IEEE P754 DFP数字二进制编码的64位操作数执行加法和减法,该编码被广泛称为二进制整数十进制(BID)编码。BID加法器使用新颖的硬件组件进行十进制数字计数和先前发布的BID舍入单元的增强版本。通过添加更复杂的控制,操作以可变延迟执行,以针对常见情况进行优化。我们表明,与单个2级流水线64位定点乘法器相比,基于bid的DFP加法器设计可以实现适度的面积增加。超过70%的BID附加区域是64位定点乘法器,它可以与二进制浮点乘法器和用于其他DFP操作的硬件共享。据我们所知,这是第一个用于添加和减去IEEE P754 bid编码DFP号码的硬件设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compiler-assisted architectural support for program code integrity monitoring in application-specific instruction set processors Improving the reliability of on-chip data caches under process variations Analytical thermal placement for VLSI lifetime improvement and minimum performance variation Why we need statistical static timing analysis Voltage drop reduction for on-chip power delivery considering leakage current variations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1