Synthesis of Nitrogen-Doped Carbon Quantum Dots from Walnut Shell Waste as Electron Transport Layer Additive for Perovskite Solar Cells

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nano Research Pub Date : 2022-11-21 DOI:10.4028/p-3tw4x3
Haiyan Guan, Yajun Lei, Qing Chen, Jiao Ding, Hongwei Lei, Yaxiong Guo, Zuo Jun Tan, F. Xiang
{"title":"Synthesis of Nitrogen-Doped Carbon Quantum Dots from Walnut Shell Waste as Electron Transport Layer Additive for Perovskite Solar Cells","authors":"Haiyan Guan, Yajun Lei, Qing Chen, Jiao Ding, Hongwei Lei, Yaxiong Guo, Zuo Jun Tan, F. Xiang","doi":"10.4028/p-3tw4x3","DOIUrl":null,"url":null,"abstract":"The production of nitrogen-doped carbon quantum dots (N-CDs) from walnut shell waste is crucially important for green chemistry and sustainable development. Herein we fabricate N-CDs by a bottom-up solvothermal method and use the novel N-CDs to modify the electron transport layer (ETL) in perovskite solar cells (PVSCs). The N-CDs can produce 440 nm fluorescence under the excitation of 350 nm light with a quantum yield of 8.75%. Infrared absorption spectra show that N-CDs contain high proportions of nitrogen-containing and oxygen-containing functional groups. , Through the incorporation of N-CDs into SnO2 ETL, the formation of defects is inhibited, and crystallinity is improved. This is because the N-CDs contains a large number of functional groups such as nitrogen and oxygen and these groups would interact with the ETL and perovskite, which reduce the defect/trap centers in PVSCs. Therefore, the N-CDs modified PVSCs show improved power conversion efficiency. This study provides a novel way to use walnut shell waste to synthesize N-CDs and achieve efficient and stable perovskites solar cells.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"49 2 1","pages":"49 - 60"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-3tw4x3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The production of nitrogen-doped carbon quantum dots (N-CDs) from walnut shell waste is crucially important for green chemistry and sustainable development. Herein we fabricate N-CDs by a bottom-up solvothermal method and use the novel N-CDs to modify the electron transport layer (ETL) in perovskite solar cells (PVSCs). The N-CDs can produce 440 nm fluorescence under the excitation of 350 nm light with a quantum yield of 8.75%. Infrared absorption spectra show that N-CDs contain high proportions of nitrogen-containing and oxygen-containing functional groups. , Through the incorporation of N-CDs into SnO2 ETL, the formation of defects is inhibited, and crystallinity is improved. This is because the N-CDs contains a large number of functional groups such as nitrogen and oxygen and these groups would interact with the ETL and perovskite, which reduce the defect/trap centers in PVSCs. Therefore, the N-CDs modified PVSCs show improved power conversion efficiency. This study provides a novel way to use walnut shell waste to synthesize N-CDs and achieve efficient and stable perovskites solar cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核桃壳废氮掺杂碳量子点制备钙钛矿太阳能电池电子传输层添加剂
利用核桃壳废弃物制备氮掺杂碳量子点(N-CDs)对绿色化学和可持续发展具有重要意义。本文采用自下而上的溶剂热法制备了N-CDs,并利用这种新型N-CDs修饰了钙钛矿太阳能电池(PVSCs)中的电子传输层(ETL)。在350 nm光激发下,N-CDs可以产生440 nm的荧光,量子产率为8.75%。红外吸收光谱表明,N-CDs含有高比例的含氮和含氧官能团。通过在SnO2 ETL中掺入N-CDs,抑制了缺陷的形成,提高了结晶度。这是因为N-CDs含有大量的官能团,如氮和氧,这些官能团会与ETL和钙钛矿相互作用,从而减少PVSCs中的缺陷/陷阱中心。因此,N-CDs修饰的PVSCs具有更高的功率转换效率。本研究为利用核桃壳废渣合成N-CDs及制备高效稳定的钙钛矿太阳能电池提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Mean Field Study of a Cylindrical Ferrimagnetic Nanotube with Different Anisotropies The Influence of Reaction Medium pH on the Structure, Optical, and Mechanical Properties of Nanosized Cu-Fe Ferrite Synthesized by the Sol-Gel Autocombustion Method Fabrication and Characterization of Eco-Friendly Polystyrene Based Zinc Oxide-Graphite (PS/ZnO-G) Hierarchical CoP@NiMn-P Nanocomposites Grown on Carbon Cloth for High-Performance Supercapacitor Electrodes High-Transconductance and Low-Leakage Current Single Aluminum Nitride Nanowire Field Effect Transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1