Algorithm 1005

K. Jónasson, S. Sigurdsson, H. F. Yngvason, Pétur Orri Ragnarsson, Páll Melsted
{"title":"Algorithm 1005","authors":"K. Jónasson, S. Sigurdsson, H. F. Yngvason, Pétur Orri Ragnarsson, Páll Melsted","doi":"10.1145/3382191","DOIUrl":null,"url":null,"abstract":"A set of Fortran subroutines for reverse mode algorithmic (or automatic) differentiation of the basic linear algebra subprograms (BLAS) is presented. This is preceded by a description of the mathematical tools used to obtain the formulae of these derivatives, with emphasis on special matrices supported by the BLAS: triangular, symmetric, and band. All single and double precision BLAS derivatives have been implemented, together with the Cholesky factorization from Linear Algebra Package (LAPACK). The subroutines are written in Fortran 2003 with a Fortran 77 interface to allow use from C and C++, as well as dynamic languages such as R, Python, Matlab, and Octave. The subroutines are all implemented by calling BLAS, thereby attaining fast runtime. Timing results show derivative runtimes that are about twice those of the corresponding BLAS, in line with theory. The emphasis is on reverse mode because it is more important for the main application that we have in mind, numerical optimization. Two examples are presented, one dealing with the least squares modeling of groundwater, and the other dealing with the maximum likelihood estimation of the parameters of a vector autoregressive time series. The article contains comprehensive tables of formulae for the BLAS derivatives as well as for several non-BLAS matrix operations commonly used in optimization.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"33 1","pages":"1 - 20"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A set of Fortran subroutines for reverse mode algorithmic (or automatic) differentiation of the basic linear algebra subprograms (BLAS) is presented. This is preceded by a description of the mathematical tools used to obtain the formulae of these derivatives, with emphasis on special matrices supported by the BLAS: triangular, symmetric, and band. All single and double precision BLAS derivatives have been implemented, together with the Cholesky factorization from Linear Algebra Package (LAPACK). The subroutines are written in Fortran 2003 with a Fortran 77 interface to allow use from C and C++, as well as dynamic languages such as R, Python, Matlab, and Octave. The subroutines are all implemented by calling BLAS, thereby attaining fast runtime. Timing results show derivative runtimes that are about twice those of the corresponding BLAS, in line with theory. The emphasis is on reverse mode because it is more important for the main application that we have in mind, numerical optimization. Two examples are presented, one dealing with the least squares modeling of groundwater, and the other dealing with the maximum likelihood estimation of the parameters of a vector autoregressive time series. The article contains comprehensive tables of formulae for the BLAS derivatives as well as for several non-BLAS matrix operations commonly used in optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法1005
给出了一组用于基本线性代数子程序(BLAS)逆模算法(或自动)微分的Fortran子程序。在此之前,描述了用于获得这些导数公式的数学工具,重点是BLAS支持的特殊矩阵:三角形,对称和带。所有单精度和双精度BLAS导数都已实现,以及线性代数包(LAPACK)的Cholesky分解。子程序是用Fortran 2003编写的,带有Fortran 77接口,允许在C和c++以及R、Python、Matlab和Octave等动态语言中使用。子例程全部通过调用BLAS实现,从而实现快速运行。计时结果表明,导数运行时间大约是相应BLAS的两倍,与理论相符。重点是反向模式,因为它对于我们想到的主要应用,数值优化,更为重要。给出了两个例子,一个处理地下水的最小二乘建模,另一个处理向量自回归时间序列参数的最大似然估计。本文包含了BLAS导数的综合公式表以及优化中常用的几种非BLAS矩阵运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1