Transient Elastohydrodynamic Lubrication of Rough Contact Surface for Intermittent Motion

Mohamed F. Abd Alsamieh
{"title":"Transient Elastohydrodynamic Lubrication of Rough Contact Surface for Intermittent Motion","authors":"Mohamed F. Abd Alsamieh","doi":"10.15282/ijame.19.2.2022.14.0756","DOIUrl":null,"url":null,"abstract":"The current study aims to study the characteristics of transient elastohydrodynamic lubrication of smooth and rough surface contacts subjected to intermittent motion for different inactive periods of motion and deceleration/acceleration periods to fulfill an identified need for such conjunction. In this case, the non-steady Reynolds’ equation, the film thickness equation with elastic deformation and taking into account the influence of surface roughness, and the load balance equation are simultaneously solved using the Newton-Raphson with Gauss-Seidel iterations method to determine the film profile and pressure distribution at various time steps. Surface contact of sinusoidal waves is presented with different amplitudes and wavelengths. The results indicated that surface waviness causes random oscillations in pressure and film profiles at different time steps. The greater the amplitude of the waviness, the more pressure and film profile variations occur. The magnitude of the pressure and film profile fluctuations becomes little noticeable as the wavelength of a wavy surface rises. The findings of this investigation also revealed that increasing the inactive duration for wavy surfaces results in zero minimum film thickness and surface contact. Squeezing action is ineffective in conveying loading capacity in this circumstance. The central and maximum pressure heights increase during the stop time interval as stop time increases. The centre film thickness increases at the end of the deceleration phase when the deceleration/acceleration period is reduced, but the minimum film thickness is unaffected. In fact, the minimum film thickness tends to be zero at the end of the deceleration phase, regardless of the deceleration/acceleration period. The central and maximum pressure increase during the stop time interval with the decrease of the deceleration/acceleration period. The difference between the results for smooth and wavy surface contacts is the appearance of fluctuations in film and pressure profiles, as well as the reduction of the film thickness and increase in pressure for the wavy surface when compared to contact with a smooth surface.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.14.0756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The current study aims to study the characteristics of transient elastohydrodynamic lubrication of smooth and rough surface contacts subjected to intermittent motion for different inactive periods of motion and deceleration/acceleration periods to fulfill an identified need for such conjunction. In this case, the non-steady Reynolds’ equation, the film thickness equation with elastic deformation and taking into account the influence of surface roughness, and the load balance equation are simultaneously solved using the Newton-Raphson with Gauss-Seidel iterations method to determine the film profile and pressure distribution at various time steps. Surface contact of sinusoidal waves is presented with different amplitudes and wavelengths. The results indicated that surface waviness causes random oscillations in pressure and film profiles at different time steps. The greater the amplitude of the waviness, the more pressure and film profile variations occur. The magnitude of the pressure and film profile fluctuations becomes little noticeable as the wavelength of a wavy surface rises. The findings of this investigation also revealed that increasing the inactive duration for wavy surfaces results in zero minimum film thickness and surface contact. Squeezing action is ineffective in conveying loading capacity in this circumstance. The central and maximum pressure heights increase during the stop time interval as stop time increases. The centre film thickness increases at the end of the deceleration phase when the deceleration/acceleration period is reduced, but the minimum film thickness is unaffected. In fact, the minimum film thickness tends to be zero at the end of the deceleration phase, regardless of the deceleration/acceleration period. The central and maximum pressure increase during the stop time interval with the decrease of the deceleration/acceleration period. The difference between the results for smooth and wavy surface contacts is the appearance of fluctuations in film and pressure profiles, as well as the reduction of the film thickness and increase in pressure for the wavy surface when compared to contact with a smooth surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间歇运动粗糙接触面的瞬态弹流润滑
本研究旨在研究在不同非活动周期和减速/加速周期的间歇运动下光滑和粗糙表面接触的瞬态弹流润滑特性,以满足这种结合的确定需求。在这种情况下,采用Newton-Raphson - Gauss-Seidel迭代法同时求解非定常Reynolds方程、考虑弹性变形并考虑表面粗糙度影响的膜厚方程和负载平衡方程,确定各时间步长的膜廓形和压力分布。正弦波的表面接触具有不同的振幅和波长。结果表明,在不同的时间步长上,表面波纹度引起压力和膜的随机振荡。波浪形振幅越大,压力和薄膜轮廓的变化就越大。随着波浪表面波长的增加,压力和薄膜轮廓波动的幅度变得不那么明显。本研究的结果还表明,增加波浪形表面的非活性持续时间导致最小膜厚度和表面接触为零。在这种情况下,挤压作用在输送承载能力方面是无效的。随着停止时间的增加,中心和最大压力高度在停止时间间隔内增加。随着减速/加速周期的缩短,减速阶段结束时中心膜厚度增加,但最小膜厚度不受影响。事实上,无论减速/加速周期如何,最小膜厚在减速阶段结束时趋于零。在停止时间间隔内,中心压力和最大压力随减速/加速周期的减小而增大。与光滑表面接触相比,光滑表面与波浪形表面接触的结果之间的差异在于薄膜和压力剖面的波动,以及波浪形表面的薄膜厚度减少和压力增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
期刊最新文献
Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1