{"title":"Transient Elastohydrodynamic Lubrication of Rough Contact Surface for Intermittent Motion","authors":"Mohamed F. Abd Alsamieh","doi":"10.15282/ijame.19.2.2022.14.0756","DOIUrl":null,"url":null,"abstract":"The current study aims to study the characteristics of transient elastohydrodynamic lubrication of smooth and rough surface contacts subjected to intermittent motion for different inactive periods of motion and deceleration/acceleration periods to fulfill an identified need for such conjunction. In this case, the non-steady Reynolds’ equation, the film thickness equation with elastic deformation and taking into account the influence of surface roughness, and the load balance equation are simultaneously solved using the Newton-Raphson with Gauss-Seidel iterations method to determine the film profile and pressure distribution at various time steps. Surface contact of sinusoidal waves is presented with different amplitudes and wavelengths. The results indicated that surface waviness causes random oscillations in pressure and film profiles at different time steps. The greater the amplitude of the waviness, the more pressure and film profile variations occur. The magnitude of the pressure and film profile fluctuations becomes little noticeable as the wavelength of a wavy surface rises. The findings of this investigation also revealed that increasing the inactive duration for wavy surfaces results in zero minimum film thickness and surface contact. Squeezing action is ineffective in conveying loading capacity in this circumstance. The central and maximum pressure heights increase during the stop time interval as stop time increases. The centre film thickness increases at the end of the deceleration phase when the deceleration/acceleration period is reduced, but the minimum film thickness is unaffected. In fact, the minimum film thickness tends to be zero at the end of the deceleration phase, regardless of the deceleration/acceleration period. The central and maximum pressure increase during the stop time interval with the decrease of the deceleration/acceleration period. The difference between the results for smooth and wavy surface contacts is the appearance of fluctuations in film and pressure profiles, as well as the reduction of the film thickness and increase in pressure for the wavy surface when compared to contact with a smooth surface.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.14.0756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study aims to study the characteristics of transient elastohydrodynamic lubrication of smooth and rough surface contacts subjected to intermittent motion for different inactive periods of motion and deceleration/acceleration periods to fulfill an identified need for such conjunction. In this case, the non-steady Reynolds’ equation, the film thickness equation with elastic deformation and taking into account the influence of surface roughness, and the load balance equation are simultaneously solved using the Newton-Raphson with Gauss-Seidel iterations method to determine the film profile and pressure distribution at various time steps. Surface contact of sinusoidal waves is presented with different amplitudes and wavelengths. The results indicated that surface waviness causes random oscillations in pressure and film profiles at different time steps. The greater the amplitude of the waviness, the more pressure and film profile variations occur. The magnitude of the pressure and film profile fluctuations becomes little noticeable as the wavelength of a wavy surface rises. The findings of this investigation also revealed that increasing the inactive duration for wavy surfaces results in zero minimum film thickness and surface contact. Squeezing action is ineffective in conveying loading capacity in this circumstance. The central and maximum pressure heights increase during the stop time interval as stop time increases. The centre film thickness increases at the end of the deceleration phase when the deceleration/acceleration period is reduced, but the minimum film thickness is unaffected. In fact, the minimum film thickness tends to be zero at the end of the deceleration phase, regardless of the deceleration/acceleration period. The central and maximum pressure increase during the stop time interval with the decrease of the deceleration/acceleration period. The difference between the results for smooth and wavy surface contacts is the appearance of fluctuations in film and pressure profiles, as well as the reduction of the film thickness and increase in pressure for the wavy surface when compared to contact with a smooth surface.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.