Machine Learning Application to CO2 Foam Rheology

J. Iskandarov, G. Fanourgakis, W. Alameri, G. Froudakis, G. Karanikolos
{"title":"Machine Learning Application to CO2 Foam Rheology","authors":"J. Iskandarov, G. Fanourgakis, W. Alameri, G. Froudakis, G. Karanikolos","doi":"10.2118/208016-ms","DOIUrl":null,"url":null,"abstract":"\n Conventional foam modelling techniques require tuning of too many parameters and long computational time in order to provide accurate predictions. Therefore, there is a need for alternative methodologies for the efficient and reliable prediction of the foams’ performance. Foams are susceptible to various operational conditions and reservoir parameters. This research aims to apply machine learning (ML) algorithms to experimental data in order to correlate important affecting parameters to foam rheology. In this way, optimum operational conditions for CO2 foam enhanced oil recovery (EOR) can be determined. In order to achieve that, five different ML algorithms were applied to experimental rheology data from various experimental studies. It was concluded that the Gradient Boosting (GB) algorithm could successfully fit the training data and give the most accurate predictions for unknown cases.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208016-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional foam modelling techniques require tuning of too many parameters and long computational time in order to provide accurate predictions. Therefore, there is a need for alternative methodologies for the efficient and reliable prediction of the foams’ performance. Foams are susceptible to various operational conditions and reservoir parameters. This research aims to apply machine learning (ML) algorithms to experimental data in order to correlate important affecting parameters to foam rheology. In this way, optimum operational conditions for CO2 foam enhanced oil recovery (EOR) can be determined. In order to achieve that, five different ML algorithms were applied to experimental rheology data from various experimental studies. It was concluded that the Gradient Boosting (GB) algorithm could successfully fit the training data and give the most accurate predictions for unknown cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在CO2泡沫流变学中的应用
传统的泡沫建模技术需要调整太多的参数和较长的计算时间,以提供准确的预测。因此,需要一种替代的方法来有效和可靠地预测泡沫的性能。泡沫易受各种操作条件和储层参数的影响。本研究旨在将机器学习(ML)算法应用于实验数据,以便将重要的影响参数与泡沫流变学相关联。通过这种方法,可以确定CO2泡沫提高采收率(EOR)的最佳操作条件。为了实现这一目标,我们将五种不同的ML算法应用于来自各种实验研究的实验流变学数据。结果表明,梯度增强(Gradient Boosting, GB)算法能够成功拟合训练数据,并对未知情况给出最准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Visualization of Oil Displacement by Foam in Porous Media Maximizing Condensate Recovery With Proven Cost Simulation for a Giant UAE Field: Base Study to Estimate Productivity between Horizontal and Vertical Wells Rationalization of Flares at Terminal Island A Geoengineering Approach to Maximum Reservoir Contact Wells Design: Case Study in a Carbonate Reservoir Under Water and Miscible Gas Injection Maximizing Brine Recovery After the Displacement of Reservoir Drill-in Fluids to Reduce Well Cost Via New, Alternate Technology In a Reservoir Offshore Abu Dhabi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1