A fault monitoring method for wind power generation system based on sliding mode observer

IF 1.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Archives of Electrical Engineering Pub Date : 2023-04-03 DOI:10.24425/AEE.2020.133922
Wenxin Yu, Shaoxian Huang, Dan Jiang
{"title":"A fault monitoring method for wind power generation system based on sliding mode observer","authors":"Wenxin Yu, Shaoxian Huang, Dan Jiang","doi":"10.24425/AEE.2020.133922","DOIUrl":null,"url":null,"abstract":": In this paper, a rotor current fault monitoring method is proposed based on a sliding mode observer. Firstly, the state-space model of the Double-Fed Induction Generator (DFIG) is constructed by vector transformation. Meanwhile, the stator voltage orientation vector control method is applied to decouple a stator and rotor currents, so as to obtain the correlation between the stator and rotor current. Furthermore, the mathematical model of stator voltage orientation is obtained. Then a state sliding mode observer (SMO) is established for the output current of the rotor of the DFIG. The stability and reachability of the system in a limited time is proved. Finally, the system state is determined by the residuals of the measured and estimated rotor currents. The simulation results show that the method proposed in this paper can effectively monitor the status: a normal state, voltage drop faults, short-circuit faults between windings, and rotor current sensor faults which have the advantages of fast response, high stability.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"121 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/AEE.2020.133922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

: In this paper, a rotor current fault monitoring method is proposed based on a sliding mode observer. Firstly, the state-space model of the Double-Fed Induction Generator (DFIG) is constructed by vector transformation. Meanwhile, the stator voltage orientation vector control method is applied to decouple a stator and rotor currents, so as to obtain the correlation between the stator and rotor current. Furthermore, the mathematical model of stator voltage orientation is obtained. Then a state sliding mode observer (SMO) is established for the output current of the rotor of the DFIG. The stability and reachability of the system in a limited time is proved. Finally, the system state is determined by the residuals of the measured and estimated rotor currents. The simulation results show that the method proposed in this paper can effectively monitor the status: a normal state, voltage drop faults, short-circuit faults between windings, and rotor current sensor faults which have the advantages of fast response, high stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于滑模观测器的风力发电系统故障监测方法
本文提出了一种基于滑模观测器的转子电流故障监测方法。首先,通过向量变换建立双馈感应发电机(DFIG)的状态空间模型。同时,采用定子电压方向矢量控制方法对定子和转子电流进行解耦,得到定子和转子电流的相关性。此外,还建立了定子电压定向的数学模型。然后建立了状态滑模观测器(SMO)来测量转子输出电流。证明了系统在有限时间内的稳定性和可达性。最后,通过测量和估计转子电流的残差来确定系统状态。仿真结果表明,本文提出的方法可以有效地监测电机的正常状态、压降故障、绕组间短路故障和转子电流传感器故障,具有响应速度快、稳定性高的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Electrical Engineering
Archives of Electrical Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
53.80%
发文量
0
审稿时长
18 weeks
期刊介绍: The journal publishes original papers in the field of electrical engineering which covers, but not limited to, the following scope: - Control - Electrical machines and transformers - Electrical & magnetic fields problems - Electric traction - Electro heat - Fuel cells, micro machines, hybrid vehicles - Nondestructive testing & Nondestructive evaluation - Electrical power engineering - Power electronics
期刊最新文献
Efficient cloud-based digital-physical testing method for feeder automation system in electrical power distribution network 148853 Optimal size and location of dispatchable distributed generators in an autonomous microgrid using Honey Badger algorithm Risk of irreversible demagnetisation under transient states of the line start permanent magnet synchronous motor taking into account magnet temperature Solar power and multi-battery for new configuration DC microgrid using centralized control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1