Protocol to design plasmonic sensors for the characterization of materials at the atomic scale

P. Viera-González, G. Sánchez-Guerrero, Edgar Martínez-Guerra, Eduardo Martínez-Guerra, Rodolfo Cortés Martínez
{"title":"Protocol to design plasmonic sensors for the characterization of materials at the atomic scale","authors":"P. Viera-González, G. Sánchez-Guerrero, Edgar Martínez-Guerra, Eduardo Martínez-Guerra, Rodolfo Cortés Martínez","doi":"10.1117/12.2676164","DOIUrl":null,"url":null,"abstract":"Materials characterization is essential since it is the basis for understanding materials’ physical and chemical properties before being used in any application. Nowadays, expensive equipment such as scanning electron microscopy and X-ray diffraction for thin film characterization at atomic layers are used. Atomic layer deposition (ALD) is a technique for growing thin films with a wide range of applications. The film thickness range is usually 1-500 nm. Plasmonic sensors are a low-cost technique for material characterization, including inorganic and organic thin films. The thickness resolution ranges from a fraction of a nanometer (monolayers) to several micrometers. These devices exploit the interaction of light with matter using surface plasmon resonance as a method based on the optoelectronic phenomenon. Kretschmann geometry continues to be a configuration widely used as an experimental setup to excite surface plasmon resonance in the characterization of different materials. It consists of a coupler prism with a thin metal film. The incident light in the total internal reflection at a specific angle, the evanescent wave transfers the energy to the electrons plasma of metal giving place surface plasmon resonance (SPR). The SPR effect in metals is highly sensitive to variations in the optical properties of the interface. We use the Kretschmann configuration and the matrix transfer method to analyze the performance numerically to achieve the optime parameters of design for the sensor’s performance. In this work, we developed a protocol to design and build a plasmonic sensor for the characterization of materials at the atomic layer level.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"79 1","pages":"126480B - 126480B-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Materials characterization is essential since it is the basis for understanding materials’ physical and chemical properties before being used in any application. Nowadays, expensive equipment such as scanning electron microscopy and X-ray diffraction for thin film characterization at atomic layers are used. Atomic layer deposition (ALD) is a technique for growing thin films with a wide range of applications. The film thickness range is usually 1-500 nm. Plasmonic sensors are a low-cost technique for material characterization, including inorganic and organic thin films. The thickness resolution ranges from a fraction of a nanometer (monolayers) to several micrometers. These devices exploit the interaction of light with matter using surface plasmon resonance as a method based on the optoelectronic phenomenon. Kretschmann geometry continues to be a configuration widely used as an experimental setup to excite surface plasmon resonance in the characterization of different materials. It consists of a coupler prism with a thin metal film. The incident light in the total internal reflection at a specific angle, the evanescent wave transfers the energy to the electrons plasma of metal giving place surface plasmon resonance (SPR). The SPR effect in metals is highly sensitive to variations in the optical properties of the interface. We use the Kretschmann configuration and the matrix transfer method to analyze the performance numerically to achieve the optime parameters of design for the sensor’s performance. In this work, we developed a protocol to design and build a plasmonic sensor for the characterization of materials at the atomic layer level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子尺度材料表征等离子体传感器设计方案
材料表征是必不可少的,因为它是在任何应用中使用之前了解材料物理和化学性质的基础。目前,昂贵的设备,如扫描电子显微镜和x射线衍射表征薄膜在原子层使用。原子层沉积(ALD)是一种具有广泛应用的薄膜生长技术。薄膜厚度范围通常为1- 500nm。等离子体传感器是一种低成本的材料表征技术,包括无机和有机薄膜。厚度分辨率范围从纳米(单层)的一小部分到几微米。这些装置利用表面等离子体共振作为一种基于光电现象的方法,利用光与物质的相互作用。在不同材料的表征中,克雷茨曼几何仍然是一种广泛使用的结构,作为激发表面等离子体共振的实验装置。它由一个带有薄金属薄膜的耦合器棱镜组成。入射光以一定角度进行全内反射,倏逝波将能量传递给金属的电子等离子体,产生表面等离子体共振(SPR)。金属中的SPR效应对界面光学性质的变化高度敏感。采用Kretschmann组态和矩阵传递法对传感器性能进行了数值分析,得到了传感器性能的最优设计参数。在这项工作中,我们开发了一种协议来设计和构建一个等离子体传感器,用于在原子层水平上表征材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moiré metalens-based fluorescence optical sectioning microscopy Novel high entropy alloy (AgAlCuNiTi) hybridized MoS2/Si nanowires heterostructure with plasmonic enhanced photocatalytic activity Structured surface plasmon generated with interfered evanescent waves Dielectric nanoantenna stickers for photoluminescence control A new optomechanical interaction and a model with non-trivial classical dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1