Development of a fiber-based microfluidic flow cytometry platform using viscoelastic fluids for polydisperse particle suspensions

M. Serhatlioglu, Emil Alstrup Jensen, M. Niora, A. T. Hansen, Christian Friberg Nielsen, Michelle Maria Theresia Jansman, L. Hosta‐Rigau, M. Dziegiel, K. Berg-Sørensen, I. Hickson, A. Kristensen
{"title":"Development of a fiber-based microfluidic flow cytometry platform using viscoelastic fluids for polydisperse particle suspensions","authors":"M. Serhatlioglu, Emil Alstrup Jensen, M. Niora, A. T. Hansen, Christian Friberg Nielsen, Michelle Maria Theresia Jansman, L. Hosta‐Rigau, M. Dziegiel, K. Berg-Sørensen, I. Hickson, A. Kristensen","doi":"10.1117/12.2633628","DOIUrl":null,"url":null,"abstract":"Flow cytometry (FC) is a pivotal tool for studying the physical and chemical properties of particles. State-of-the-art FC systems are highly advanced, yet they are expensive, bulky, and require high sample volume, qualified operators, and periodic maintenance. The manipulation of particles suspended in viscoelastic fluids has received increasing attention, especially for miniaturized flow cytometry technologies. This study presents a miniaturized optical capillary FC device using the viscoelastic focusing technique. A straight, one inlet/outlet microcapillary device is precisely aligned to a fiber-coupled laser source and detectors. Forward scattered, side scattered, and fluorescently emitted light signals are collected and analyzed in a real-time environment. The developed platform fits onto an inverted microscope stage enabling real-time microscopy imaging of the particles of interest together with the flow cytometry analysis. We achieved stable viscoelastic focusing and performed FC measurements for rigid polystyrene beads (diameters: 2 – 15 μm), non-spherical human erythrocytes, and canonical shape metaphase human chromosomes. We performed cytometry measurements with a throughput of 100 events/s yielding a coefficient of variation of 2%. This newly developed FC device is a versatile tool and can be operated with any inverted microscope to get the mutual benefits of optical and imaging FC measurements. Furthermore, it is possible to extend these benefits by adding more back-end tools, such as optical trapping and Raman spectroscopy.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"24 1","pages":"1219802 - 1219802-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flow cytometry (FC) is a pivotal tool for studying the physical and chemical properties of particles. State-of-the-art FC systems are highly advanced, yet they are expensive, bulky, and require high sample volume, qualified operators, and periodic maintenance. The manipulation of particles suspended in viscoelastic fluids has received increasing attention, especially for miniaturized flow cytometry technologies. This study presents a miniaturized optical capillary FC device using the viscoelastic focusing technique. A straight, one inlet/outlet microcapillary device is precisely aligned to a fiber-coupled laser source and detectors. Forward scattered, side scattered, and fluorescently emitted light signals are collected and analyzed in a real-time environment. The developed platform fits onto an inverted microscope stage enabling real-time microscopy imaging of the particles of interest together with the flow cytometry analysis. We achieved stable viscoelastic focusing and performed FC measurements for rigid polystyrene beads (diameters: 2 – 15 μm), non-spherical human erythrocytes, and canonical shape metaphase human chromosomes. We performed cytometry measurements with a throughput of 100 events/s yielding a coefficient of variation of 2%. This newly developed FC device is a versatile tool and can be operated with any inverted microscope to get the mutual benefits of optical and imaging FC measurements. Furthermore, it is possible to extend these benefits by adding more back-end tools, such as optical trapping and Raman spectroscopy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维微流控流式细胞仪平台的开发,粘弹性流体用于多分散颗粒悬浮液
流式细胞仪(FC)是研究颗粒物理化学性质的关键工具。最先进的FC系统非常先进,但它们价格昂贵,体积庞大,需要高样本量,合格的操作人员和定期维护。悬浮在粘弹性流体中的颗粒的操作已受到越来越多的关注,特别是小型化的流式细胞术技术。本文研究了一种采用粘弹性聚焦技术的小型光学毛细管FC装置。直,一个入口/出口微毛细管装置是精确对准光纤耦合激光源和探测器。在实时环境中收集和分析前向散射、侧向散射和荧光发射的光信号。开发的平台适合于倒置显微镜平台,可以对感兴趣的颗粒进行实时显微镜成像,并进行流式细胞术分析。我们实现了稳定的粘弹性聚焦,并对刚性聚苯乙烯珠(直径:2 - 15 μm)、非球形人红细胞和规范形中期人染色体进行了FC测量。我们以100个事件/秒的通量进行了细胞术测量,变异系数为2%。这个新开发的FC设备是一个多功能的工具,可以与任何倒置显微镜操作,以获得光学和成像FC测量的共同利益。此外,可以通过增加更多的后端工具(如光捕获和拉曼光谱)来扩展这些优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moiré metalens-based fluorescence optical sectioning microscopy Novel high entropy alloy (AgAlCuNiTi) hybridized MoS2/Si nanowires heterostructure with plasmonic enhanced photocatalytic activity Structured surface plasmon generated with interfered evanescent waves Dielectric nanoantenna stickers for photoluminescence control A new optomechanical interaction and a model with non-trivial classical dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1