An analysis of electroquasistatic induction micromotors

Stephen F. Bart, Jeffrey H. Lang
{"title":"An analysis of electroquasistatic induction micromotors","authors":"Stephen F. Bart,&nbsp;Jeffrey H. Lang","doi":"10.1016/0250-6874(89)87107-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the steady-state operation of the electroquasistatic induction micromotor (IM). A rotary pancake IM compatible with surface micromachining serves as an example. A model is developed to predict the electric potential, field and free charge within the IM. The model also predicts the motive torque and transverse force of electric origin acting on its rotor. The torque is balanced against bushing friction and windage to determine rotor velocity. Here, the bushing friction is modeled as a function of the transverse force acting on the rotor. Finally, an equivalent circuit model is developed, which described important aspects of the electromechanical operation of the IM.</p><p>The model is used to study IM performance and its dependence on IM dimensions and material properties. For example, IM performance is predicted to be a complex function of axial IM dimensions and a strong function of rotor conductivity. The study also reveals that IM performance can differ significally from that of the variable-capacitance micromotor (VCM). For example, the dependence of motive torque and transverse force on axial dimensions can be significanly different in some IM operating regimes, allowing the possibility of improved performance over the VCM. IM and VCM dependences on micromotor geometry, velocity and material properties can also be significanlty different. The excitation and control requirements reflect the difference between a synchronous (VCM) and an asynchronous (IM) motor, as well as the possibility of obtaining an axially stable rotor position for certain IM material parameters.</p></div>","PeriodicalId":101159,"journal":{"name":"Sensors and Actuators","volume":"20 1","pages":"Pages 97-106"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0250-6874(89)87107-0","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0250687489871070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

This paper studies the steady-state operation of the electroquasistatic induction micromotor (IM). A rotary pancake IM compatible with surface micromachining serves as an example. A model is developed to predict the electric potential, field and free charge within the IM. The model also predicts the motive torque and transverse force of electric origin acting on its rotor. The torque is balanced against bushing friction and windage to determine rotor velocity. Here, the bushing friction is modeled as a function of the transverse force acting on the rotor. Finally, an equivalent circuit model is developed, which described important aspects of the electromechanical operation of the IM.

The model is used to study IM performance and its dependence on IM dimensions and material properties. For example, IM performance is predicted to be a complex function of axial IM dimensions and a strong function of rotor conductivity. The study also reveals that IM performance can differ significally from that of the variable-capacitance micromotor (VCM). For example, the dependence of motive torque and transverse force on axial dimensions can be significanly different in some IM operating regimes, allowing the possibility of improved performance over the VCM. IM and VCM dependences on micromotor geometry, velocity and material properties can also be significanlty different. The excitation and control requirements reflect the difference between a synchronous (VCM) and an asynchronous (IM) motor, as well as the possibility of obtaining an axially stable rotor position for certain IM material parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静电感应微电机的分析
本文研究了静电感应微电机的稳态运行。以一种与表面微加工兼容的旋转煎饼IM为例。建立了一个模型来预测电势、电场和自由电荷。该模型还预测了作用在转子上的电机转矩和横向力。扭矩与衬套摩擦和风量相平衡,以确定转子速度。在这里,衬套摩擦被建模为作用在转子上的横向力的函数。最后,建立了等效电路模型,描述了IM机电操作的重要方面。该模型用于研究IM性能及其对IM尺寸和材料性能的依赖关系。例如,预测IM性能是轴向IM尺寸的复杂函数和转子电导率的强烈函数。研究还表明,微动电机的性能与变电容微电机(VCM)的性能存在显著差异。例如,在一些IM操作机制中,动力扭矩和横向力对轴向尺寸的依赖关系可能会有很大不同,从而有可能改善VCM的性能。IM和VCM对微电机几何形状、速度和材料特性的依赖也可能有显著不同。励磁和控制要求反映了同步(VCM)和异步(IM)电机之间的区别,以及在某些IM材料参数下获得轴向稳定转子位置的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Conducting polymer gas sensors Part III: Results for four different polymers and five different vapours Ionic detection using differential measurement between an ion-sensitive FET and a reference FET Gas-sensing characteristics of SnO2—x thin film with added Pt fabricated by the dipping method A wafer-to-wafer alignment technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1