{"title":"Discretized skew‐t mixture model for deconvoluting liquid chromatograph mass spectrometry data","authors":"Xuwen Zhu, Xiang Zhang","doi":"10.1111/stan.12285","DOIUrl":null,"url":null,"abstract":"In this paper, new statistical algorithms for accurate peak detection in the metabolomic data are proposed. Specifically, liquid chromatograph‐mass spectrometry data are analyzed. The discretized skew‐t mixture model for peak detection is proposed. It shows great flexibility and capability in fitting skewed or heavy‐tailed peaks. The methodology is further extended to cross‐sample peak alignment for identifying the true peaks. A measure of peak credibility is provided through the assessment of misclassification probabilities between two cross‐sample peaks. The proposed algorithms are applied to spike‐in data with promising results.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12285","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, new statistical algorithms for accurate peak detection in the metabolomic data are proposed. Specifically, liquid chromatograph‐mass spectrometry data are analyzed. The discretized skew‐t mixture model for peak detection is proposed. It shows great flexibility and capability in fitting skewed or heavy‐tailed peaks. The methodology is further extended to cross‐sample peak alignment for identifying the true peaks. A measure of peak credibility is provided through the assessment of misclassification probabilities between two cross‐sample peaks. The proposed algorithms are applied to spike‐in data with promising results.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.