Long Chen, Xiyuan Tang, A. Sanyal, Yeonam Yoon, Jie Cong, Nan Sun
{"title":"A 10.5-b ENOB 645 nW 100kS/s SAR ADC with statistical estimation based noise reduction","authors":"Long Chen, Xiyuan Tang, A. Sanyal, Yeonam Yoon, Jie Cong, Nan Sun","doi":"10.1109/CICC.2015.7338493","DOIUrl":null,"url":null,"abstract":"This paper presents a power-efficient SNR enhancement technique for SAR ADCs. By accurately estimating the conversion residue, it can suppress both comparator noise and quantization error. Thus, it allows the use of a noisy low-power comparator and a relatively low resolution DAC to achieve high resolution. The proposed technique has low hardware complexity, requiring no change to the standard ADC operation except for repeating the LSB comparisons. A prototype ADC is designed in 65nm CMOS. Its SNR is improved by 7dB with the proposed technique. Overall, it achieves 10.5-b ENOB while operating at 100kS/s and consuming 645nW from a 0.7V power supply.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"13 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This paper presents a power-efficient SNR enhancement technique for SAR ADCs. By accurately estimating the conversion residue, it can suppress both comparator noise and quantization error. Thus, it allows the use of a noisy low-power comparator and a relatively low resolution DAC to achieve high resolution. The proposed technique has low hardware complexity, requiring no change to the standard ADC operation except for repeating the LSB comparisons. A prototype ADC is designed in 65nm CMOS. Its SNR is improved by 7dB with the proposed technique. Overall, it achieves 10.5-b ENOB while operating at 100kS/s and consuming 645nW from a 0.7V power supply.