{"title":"Hospitalization Patient Forecasting Based on Multi–Task Deep Learning","authors":"Mingjie Zhou, Xiaoxiao Huang, Haipeng Liu, Dingchang Zheng","doi":"10.34768/amcs-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract Forecasting the number of hospitalization patients is important for hospital management. The number of hospitalization patients depends on three types of patients, namely admission patients, discharged patients, and inpatients. However, previous works focused on one type of patients rather than the three types of patients together. In this paper, we propose a multi-task forecasting model to forecast the three types of patients simultaneously. We integrate three neural network modules into a unified model for forecasting. Besides, we extract date features of admission and discharged patient flows to improve forecasting accuracy. The algorithm is trained and evaluated on a real-world data set of a one-year daily observation of patient numbers in a hospital. We compare the performance of our model with eight baselines over two real-word data sets. The experimental results show that our approach outperforms other baseline algorithms significantly.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"33 1","pages":"151 - 162"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Forecasting the number of hospitalization patients is important for hospital management. The number of hospitalization patients depends on three types of patients, namely admission patients, discharged patients, and inpatients. However, previous works focused on one type of patients rather than the three types of patients together. In this paper, we propose a multi-task forecasting model to forecast the three types of patients simultaneously. We integrate three neural network modules into a unified model for forecasting. Besides, we extract date features of admission and discharged patient flows to improve forecasting accuracy. The algorithm is trained and evaluated on a real-world data set of a one-year daily observation of patient numbers in a hospital. We compare the performance of our model with eight baselines over two real-word data sets. The experimental results show that our approach outperforms other baseline algorithms significantly.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.