Trends and Seasonal Patterns in the Composition and Energy Content of Waste from three Ukrainian City Districts: The Influence of Commercial and Residential Areas
Michael Hoffmann, S. Shmarin, G. Denafas, V. Mykhaylenko, S. Ogorodnik, C. Ludwig
{"title":"Trends and Seasonal Patterns in the Composition and Energy Content of Waste from three Ukrainian City Districts: The Influence of Commercial and Residential Areas","authors":"Michael Hoffmann, S. Shmarin, G. Denafas, V. Mykhaylenko, S. Ogorodnik, C. Ludwig","doi":"10.5963/IJEE0506002","DOIUrl":null,"url":null,"abstract":"The volume and composition of Ukraine’s municipal solid waste (MSW) has changed in recent years. The percentage of paper and plastics has increased considerably; consequently, manual separation of these materials from landfills has become necessary. In 2012, thirteen million tons of MSW were collected and questions about the origin and effects of these increases have arisen. According to the EU Waste Directive, the separation and subsequent recycling of certain waste materials should be a priority; however, these materials can also be used to produce electricity, heat, and gas. This presents a difficult choice because Ukraine currently depends heavily on imported gas for fuel. This article studied the composition and energy content of waste collected separately from three sectors in a mid-sized town near Kiev. The first sector consisted of office buildings, the second consisted of multi-family housing units, and the third consisted of single-family housing units. The varying waste compositions identified among the sectors are relevant to potential energy-recovery planning efforts, particularly if energy-rich paper and plastics are sorted out. Multi-family housing waste was found to contain the greatest percentage of paper and plastics of the three sectors analyzed; this number has increased in recent years. Conversely, the pattern followed by single-family housing waste appeared weaker. For waste produced by the office district, average monthly wages had a strong impact on the materials that were collected. Moreover, strong seasonal effects were observed in all districts. The presented data support future waste management decisions related to waste utilization in the current and long terms. In contrast to western European countries, seasonal changes exhibited by unsorted municipal waste must be considered when making waste management decisions in Eastern Europe. The unique findings of this report may be relevant to other developing countries.","PeriodicalId":14041,"journal":{"name":"International journal of energy engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of energy engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5963/IJEE0506002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The volume and composition of Ukraine’s municipal solid waste (MSW) has changed in recent years. The percentage of paper and plastics has increased considerably; consequently, manual separation of these materials from landfills has become necessary. In 2012, thirteen million tons of MSW were collected and questions about the origin and effects of these increases have arisen. According to the EU Waste Directive, the separation and subsequent recycling of certain waste materials should be a priority; however, these materials can also be used to produce electricity, heat, and gas. This presents a difficult choice because Ukraine currently depends heavily on imported gas for fuel. This article studied the composition and energy content of waste collected separately from three sectors in a mid-sized town near Kiev. The first sector consisted of office buildings, the second consisted of multi-family housing units, and the third consisted of single-family housing units. The varying waste compositions identified among the sectors are relevant to potential energy-recovery planning efforts, particularly if energy-rich paper and plastics are sorted out. Multi-family housing waste was found to contain the greatest percentage of paper and plastics of the three sectors analyzed; this number has increased in recent years. Conversely, the pattern followed by single-family housing waste appeared weaker. For waste produced by the office district, average monthly wages had a strong impact on the materials that were collected. Moreover, strong seasonal effects were observed in all districts. The presented data support future waste management decisions related to waste utilization in the current and long terms. In contrast to western European countries, seasonal changes exhibited by unsorted municipal waste must be considered when making waste management decisions in Eastern Europe. The unique findings of this report may be relevant to other developing countries.