{"title":"Effect of Heating Mode and Copper Content on the Densification of W-Cu Alloys","authors":"A. Mondal, A. Upadhyaya, D. Agrawal","doi":"10.1155/2013/603791","DOIUrl":null,"url":null,"abstract":"This study investigates the effect of heating mode on the sintering of tungsten-copper alloys containing up to 30 wt.% Cu. The sinterability of the W-Cu system consolidated in a 2.45 GHz multimode microwave furnace has been critically compared with that processed in a radiatively heated (conventional) furnace. The as-pressed W-Cu alloys can be readily sintered in microwave furnace with substantial (sixfold) reduction in the processing time. As compared to conventional sintering, microwave processing results in greater densification, more homogenous distribution of the binder phase, and smaller tungsten grain size. The densification in compacts increases with increasing Cu content. For all compositions, the electrical conductivity and hardness of microwave sintered W-Cu alloys are higher than those of their conventionally sintered counterparts. This study investigates the effect of heating mode on the sintering of tungsten-copper alloys containing up to 30 wt.% Cu. The W-Cu alloys were sintered in a 2.45 GHz microwave furnace with substantial (sixfold) reduction in the processing time. As compared to conventional sintering, microwave processing results in greater densification, more homogenous distribution of the binder phase, and smaller tungsten grain size. This results in higher electrical conductivity and hardness of the microwave sintered W-Cu alloys.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"17 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/603791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This study investigates the effect of heating mode on the sintering of tungsten-copper alloys containing up to 30 wt.% Cu. The sinterability of the W-Cu system consolidated in a 2.45 GHz multimode microwave furnace has been critically compared with that processed in a radiatively heated (conventional) furnace. The as-pressed W-Cu alloys can be readily sintered in microwave furnace with substantial (sixfold) reduction in the processing time. As compared to conventional sintering, microwave processing results in greater densification, more homogenous distribution of the binder phase, and smaller tungsten grain size. The densification in compacts increases with increasing Cu content. For all compositions, the electrical conductivity and hardness of microwave sintered W-Cu alloys are higher than those of their conventionally sintered counterparts. This study investigates the effect of heating mode on the sintering of tungsten-copper alloys containing up to 30 wt.% Cu. The W-Cu alloys were sintered in a 2.45 GHz microwave furnace with substantial (sixfold) reduction in the processing time. As compared to conventional sintering, microwave processing results in greater densification, more homogenous distribution of the binder phase, and smaller tungsten grain size. This results in higher electrical conductivity and hardness of the microwave sintered W-Cu alloys.