Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise

IF 11 Q1 STATISTICS & PROBABILITY Statistics Surveys Pub Date : 2010-01-01 DOI:10.1214/09-SS059
S. Achard, Jean‐François Coeurjolly
{"title":"Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise","authors":"S. Achard, Jean‐François Coeurjolly","doi":"10.1214/09-SS059","DOIUrl":null,"url":null,"abstract":"This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the \\texttt{R} package \\texttt{dvfBm}.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"135 1","pages":"117-147"},"PeriodicalIF":11.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/09-SS059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 34

Abstract

This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the \texttt{R} package \texttt{dvfBm}.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在异常值和加性噪声时分数布朗运动的离散变化
本文概述了用基于离散变分的方法估计带有异常值和/或加性噪声的分数阶布朗运动的赫斯特参数问题。我们表明,通过考虑样本分位数和平方序列的裁剪平均值或经验方差的差异,基于扩展序列变异函数的对数线性的经典估计过程对异常值和/或加性噪声具有更强的鲁棒性。通过大型仿真研究对这些不同的程序进行了比较和讨论,并在\texttt{R}包\texttt{dvfBm}中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
期刊最新文献
White noise testing for functional time series Spline local basis methods for nonparametric density estimation Core-periphery structure in networks: A statistical exposition Kronecker-structured covariance models for multiway data A brief and understandable guide to pseudo-random number generators and specific models for security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1