{"title":"Continuous multi-query optimization for subgraph matching over dynamic graphs","authors":"Xi Wang, Qianzhen Zhang, Deke Guo, Xiang Zhao","doi":"10.3233/sw-212864","DOIUrl":null,"url":null,"abstract":"There is a growing need to perform real-time analytics on dynamic graphs in order to deliver the values of big data to users. An important problem from such applications is continuously identifying and monitoring critical patterns when fine-grained updates at a high velocity occur on the graphs. A lot of efforts have been made to develop practical solutions for these problems. Despite the efforts, existing algorithms showed limited running time and scalability in dealing with large and/or many graphs. In this paper, we study the problem of continuous multi-query optimization for subgraph matching over dynamic graph data. (1) We propose annotated query graph, which is obtained by merging the multi-queries into one. (2) Based on the annotated query, we employ a concise auxiliary data structure to represent partial solutions in a compact form. (3) In addition, we propose an efficient maintenance strategy to detect the affected queries for each update and report corresponding matches in one pass. (4) Extensive experiments over real-life and synthetic datasets verify the effectiveness and efficiency of our approach and confirm a two orders of magnitude improvement of the proposed solution.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"41 1","pages":"601-622"},"PeriodicalIF":3.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-212864","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
There is a growing need to perform real-time analytics on dynamic graphs in order to deliver the values of big data to users. An important problem from such applications is continuously identifying and monitoring critical patterns when fine-grained updates at a high velocity occur on the graphs. A lot of efforts have been made to develop practical solutions for these problems. Despite the efforts, existing algorithms showed limited running time and scalability in dealing with large and/or many graphs. In this paper, we study the problem of continuous multi-query optimization for subgraph matching over dynamic graph data. (1) We propose annotated query graph, which is obtained by merging the multi-queries into one. (2) Based on the annotated query, we employ a concise auxiliary data structure to represent partial solutions in a compact form. (3) In addition, we propose an efficient maintenance strategy to detect the affected queries for each update and report corresponding matches in one pass. (4) Extensive experiments over real-life and synthetic datasets verify the effectiveness and efficiency of our approach and confirm a two orders of magnitude improvement of the proposed solution.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.