{"title":"Current and future perspectives of atomic force microscopy to elicit the intrinsic properties of soft matter at the single molecule level","authors":"C. Marcuello","doi":"10.3934/bioeng.2022020","DOIUrl":null,"url":null,"abstract":"Soft matter encompasses multitude of systems like biomolecules, living cells, polymers, composites or blends. The increasing interest to better understand their physico-chemical properties has significantly favored the development of new techniques with unprecedented resolution. In this framework, atomic force microscopy (AFM) can act as one main actor to address multitude of intrinsic sample characteristics at the nanoscale level. AFM presents many advantages in comparison to other bulk techniques as the assessment of individual entities discharging thus, ensemble averaging phenomena. Moreover, AFM enables the visualization of singular events that eventually can provide response of some open questions that still remain unclear. The present manuscript aims to make the reader aware of the potential applications in the employment of this tool by providing recent examples of scientific studies where AFM has been employed with success. Several operational modes like AFM imaging, AFM based force spectroscopy (AFM-FS), nanoindentation, AFM-nanoscale infrared spectroscopy (AFM-nanoIR) or magnetic force microscopy (MFM) will be fully explained to detail the type of information that AFM is capable to gather. Finally, future prospects will be delivered to discern the following steps to be conducted in this field.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2022020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Soft matter encompasses multitude of systems like biomolecules, living cells, polymers, composites or blends. The increasing interest to better understand their physico-chemical properties has significantly favored the development of new techniques with unprecedented resolution. In this framework, atomic force microscopy (AFM) can act as one main actor to address multitude of intrinsic sample characteristics at the nanoscale level. AFM presents many advantages in comparison to other bulk techniques as the assessment of individual entities discharging thus, ensemble averaging phenomena. Moreover, AFM enables the visualization of singular events that eventually can provide response of some open questions that still remain unclear. The present manuscript aims to make the reader aware of the potential applications in the employment of this tool by providing recent examples of scientific studies where AFM has been employed with success. Several operational modes like AFM imaging, AFM based force spectroscopy (AFM-FS), nanoindentation, AFM-nanoscale infrared spectroscopy (AFM-nanoIR) or magnetic force microscopy (MFM) will be fully explained to detail the type of information that AFM is capable to gather. Finally, future prospects will be delivered to discern the following steps to be conducted in this field.