Validation of a Physical Retrieval Scheme of Solar Surface Irradiances from Narrowband Satellite Radiances

H. Deneke, A. Feijt, A. Lammeren, C. Simmer
{"title":"Validation of a Physical Retrieval Scheme of Solar Surface Irradiances from Narrowband Satellite Radiances","authors":"H. Deneke, A. Feijt, A. Lammeren, C. Simmer","doi":"10.1175/JAM2290.1","DOIUrl":null,"url":null,"abstract":"Abstract An algorithm is presented to derive the downwelling solar surface irradiance from satellite measurements of the 0.63-μm reflectance, which explicitly accounts for variations in cloud optical depth and integrated water vapor. For validation, a long-term dataset of 40 356 pyranometer measurements and 1450 NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) satellite scenes of the Netherlands is used. A mean overestimate of the satellite-retrieved irradiance by 7% is found, which is consistent with numerous other studies reporting positive biases of atmospheric transmissivities that are calculated by radiative transfer schemes in comparison with measurements. The bias can be explained by the calibration and measurement uncertainties of both the AVHRR and pyranometer. A strong solar zenith angle dependence of the bias is found when water clouds are assumed in the retrieval. Such a dependence is not observed for ice clouds. Currently, there is not enough information for a conclusive explanation o...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"253 1","pages":"1453-1466"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2290.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Abstract An algorithm is presented to derive the downwelling solar surface irradiance from satellite measurements of the 0.63-μm reflectance, which explicitly accounts for variations in cloud optical depth and integrated water vapor. For validation, a long-term dataset of 40 356 pyranometer measurements and 1450 NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) satellite scenes of the Netherlands is used. A mean overestimate of the satellite-retrieved irradiance by 7% is found, which is consistent with numerous other studies reporting positive biases of atmospheric transmissivities that are calculated by radiative transfer schemes in comparison with measurements. The bias can be explained by the calibration and measurement uncertainties of both the AVHRR and pyranometer. A strong solar zenith angle dependence of the bias is found when water clouds are assumed in the retrieval. Such a dependence is not observed for ice clouds. Currently, there is not enough information for a conclusive explanation o...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
窄带卫星辐照度物理反演太阳表面辐照度方案的验证
摘要提出了一种利用卫星测量的0.63 μm反射率反演下坡太阳表面辐照度的算法,该算法明确地考虑了云光学深度和综合水汽的变化。为了验证,使用了荷兰40 356个高温计测量数据和1450个NOAA-14先进甚高分辨率辐射计(AVHRR)卫星场景的长期数据集。发现卫星获取的辐照度平均高估了7%,这与许多其他研究一致,这些研究报告了由辐射传输方案计算的大气透过率与测量值相比的正偏差。这种偏差可以用AVHRR和pyranometer的校准和测量不确定度来解释。当在反演中假设水云时,发现太阳天顶角对偏差有很强的依赖性。在冰云中没有观察到这种依赖关系。目前,没有足够的资料对……作出结论性的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple Empirical Models for Estimating the Increase in the Central Pressure of Tropical Cyclones after Landfall along the Coastline of the United States A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado Winter Snowfall Event On the Horizontal Scale of Elevation Dependence of Australian Monthly Precipitation On the Vertical Structure of Modeled and Observed Deep Convective Storms: Insights for Precipitation Retrieval and Microphysical Parameterization A Comparison of the Conservation of Number Concentration for the Continuous Collection and Vapor Diffusion Growth Equations Using One- and Two-Moment Schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1