Height model generation, automatic geocoding and a mosaicing using airborne AeS-1 InSAR data

F. Holecz, J. Moreira, P. Pasquali, S. Voigt, E. Meier, D. Nuesch
{"title":"Height model generation, automatic geocoding and a mosaicing using airborne AeS-1 InSAR data","authors":"F. Holecz, J. Moreira, P. Pasquali, S. Voigt, E. Meier, D. Nuesch","doi":"10.1109/IGARSS.1997.609148","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to present the generation of high resolution digital surface models using airborne AeS-1 interferometric SAR data, their automatic geocoding and mosaicing. In order to be able to carry out these steps, high precision differential Global Positioning System data, high frequency attitude data of the platform, exact time synchronization and range delay of the system must be known. Since in the airborne case motion instabilities are large, due to dynamic properties of the aircraft and atmospheric turbulences, precise motion measurements of the platform are extracted and considered during the SAR processing. Once that all these basic requirements are fulfilled, one is able, using the processing reference tracks, and exploiting a forward-backward geocoding, to convert the phase differences to elevation data and to geolocate them by taking into account all geodetic and cartographic transforms. Results based on 400 MHz X-band InSAR data show that the derived surface model has a positioning accuracy in the order of 0.5 m and a height accuracy better than 0.3 m.","PeriodicalId":64877,"journal":{"name":"遥感信息","volume":"9 1","pages":"1929-1931 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感信息","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/IGARSS.1997.609148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The goal of this paper is to present the generation of high resolution digital surface models using airborne AeS-1 interferometric SAR data, their automatic geocoding and mosaicing. In order to be able to carry out these steps, high precision differential Global Positioning System data, high frequency attitude data of the platform, exact time synchronization and range delay of the system must be known. Since in the airborne case motion instabilities are large, due to dynamic properties of the aircraft and atmospheric turbulences, precise motion measurements of the platform are extracted and considered during the SAR processing. Once that all these basic requirements are fulfilled, one is able, using the processing reference tracks, and exploiting a forward-backward geocoding, to convert the phase differences to elevation data and to geolocate them by taking into account all geodetic and cartographic transforms. Results based on 400 MHz X-band InSAR data show that the derived surface model has a positioning accuracy in the order of 0.5 m and a height accuracy better than 0.3 m.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机载AeS-1 InSAR数据生成高度模型、自动地理编码和拼接
本文的目标是利用机载AeS-1干涉SAR数据生成高分辨率数字地表模型,并对其进行自动地理编码和拼接。为了能够进行这些步骤,必须知道高精度差分全球定位系统数据,平台的高频姿态数据,系统的精确时间同步和距离延迟。在机载情况下,由于飞机的动力学特性和大气湍流,运动不稳定性较大,因此在SAR处理过程中提取并考虑了平台的精确运动测量值。一旦满足了所有这些基本要求,就可以使用处理参考轨迹,并利用向前向后的地理编码,将相位差转换为高程数据,并通过考虑所有大地测量和制图转换来对它们进行地理定位。基于400 MHz x波段InSAR数据的结果表明,所建立的地表模型定位精度在0.5 m左右,高度精度优于0.3 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
3984
期刊介绍: Remote Sensing Information is a bimonthly academic journal supervised by the Ministry of Natural Resources of the People's Republic of China and sponsored by China Academy of Surveying and Mapping Science. Since its inception in 1986, it has been one of the authoritative journals in the field of remote sensing in China.In 2014, it was recognised as one of the first batch of national academic journals, and was awarded the honours of Core Journals of China Science Citation Database, Chinese Core Journals, and Core Journals of Science and Technology of China. The journal won the Excellence Award (First Prize) of the National Excellent Surveying, Mapping and Geographic Information Journal Award in 2011 and 2017 respectively. Remote Sensing Information is dedicated to reporting the cutting-edge theoretical and applied results of remote sensing science and technology, promoting academic exchanges at home and abroad, and promoting the application of remote sensing science and technology and industrial development. The journal adheres to the principles of openness, fairness and professionalism, abides by the anonymous review system of peer experts, and has good social credibility. The main columns include Review, Theoretical Research, Innovative Applications, Special Reports, International News, Famous Experts' Forum, Geographic National Condition Monitoring, etc., covering various fields such as surveying and mapping, forestry, agriculture, geology, meteorology, ocean, environment, national defence and so on. Remote Sensing Information aims to provide a high-level academic exchange platform for experts and scholars in the field of remote sensing at home and abroad, to enhance academic influence, and to play a role in promoting and supporting the protection of natural resources, green technology innovation, and the construction of ecological civilisation.
期刊最新文献
[ICMRSISIIT 2019 Front matter] Performance Analysis of SISO and MIMO Communication Systems using Multiple Point Scatter Model Effect of COVID-19 on Education in Ghana: Narratives from Primary, Junior High and Senior High School children Gender-inspired Facial Age Recognition based on Reflexivity, Antisymmetry and Transitivity Nature-inspired search method for IoT-based water leakage location detection system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1