Temperature measurement control problem of vibrational viscometers considering heat generation and heat transfer effect of oscillators

Ali Akpek, C. Youn, T. Kagawa
{"title":"Temperature measurement control problem of vibrational viscometers considering heat generation and heat transfer effect of oscillators","authors":"Ali Akpek, C. Youn, T. Kagawa","doi":"10.1109/ASCC.2013.6606100","DOIUrl":null,"url":null,"abstract":"In viscosity measurement, temperature control is very important. In this research, temperature distribution effect of vibrational viscometers was analyzed. Vibrational viscometer was designated amongst other viscometer types due to inexpensiveness, handiness and efficacious continuous viscosity measurement capability. The research was conducted in three parts. In the first part; heat generation problem of boundary layers of oscillators of vibrational viscometers was analyzed. Experiments prove that due to the friction between the oscillators and the fluids, heat is generated from the vibrational boundary layer of the oscillators. In the second part, unequal temperature distribution problem of vibrational viscometers was analyzed. When heater generates heat during continuous viscosity measurement, temperature disperses every part of a fluid and affects the viscosity of the fluid. Therefore, it may not be possible to acquire a homogenous viscosity value from a fluid since temperature distribution cannot be equal at every point of a standard fluid. Experimental outcomes and mathematical calculations have also strengthened this conclusion. In the last part of the research, in order to solve the unequal temperature distribution problem, it is proposed to utilize a magnetic stirrer which will mix up the fluid throughout the viscosity measurement and constitute homogenous temperature.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"29 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In viscosity measurement, temperature control is very important. In this research, temperature distribution effect of vibrational viscometers was analyzed. Vibrational viscometer was designated amongst other viscometer types due to inexpensiveness, handiness and efficacious continuous viscosity measurement capability. The research was conducted in three parts. In the first part; heat generation problem of boundary layers of oscillators of vibrational viscometers was analyzed. Experiments prove that due to the friction between the oscillators and the fluids, heat is generated from the vibrational boundary layer of the oscillators. In the second part, unequal temperature distribution problem of vibrational viscometers was analyzed. When heater generates heat during continuous viscosity measurement, temperature disperses every part of a fluid and affects the viscosity of the fluid. Therefore, it may not be possible to acquire a homogenous viscosity value from a fluid since temperature distribution cannot be equal at every point of a standard fluid. Experimental outcomes and mathematical calculations have also strengthened this conclusion. In the last part of the research, in order to solve the unequal temperature distribution problem, it is proposed to utilize a magnetic stirrer which will mix up the fluid throughout the viscosity measurement and constitute homogenous temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑振子产热和传热效应的振动粘度计测温控制问题
在粘度测量中,温度控制是非常重要的。本研究分析了振动粘度计的温度分布效应。振动粘度计在其他粘度计类型中被指定为由于便宜,方便和有效的连续粘度测量能力。本研究分为三个部分。第一部分;分析了振动粘度计振子边界层的发热问题。实验证明,由于振子与流体之间的摩擦,振子的振动边界层产生热量。第二部分分析了振动粘度计温度分布不均匀的问题。当加热器在连续粘度测量过程中产生热量时,温度会分散流体的各个部分,并影响流体的粘度。因此,由于温度分布不可能在标准流体的每个点上都相等,因此可能无法从流体中获得均匀的粘度值。实验结果和数学计算也证实了这一结论。在研究的最后一部分,为了解决温度分布不均匀的问题,提出了使用磁力搅拌器,使流体在整个粘度测量过程中混合,形成均匀的温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable double resonant controller for fast image scanning of atomic force microscope FA system integration using robotic intelligent componets Parameter identification of bacterial growth bioprocesses using particle swarm optimization Velocity planning to optimize traction losses in a City-Bus Equipped with Permanent Magnet Three-Phase Synchronous Motors Stabilization of uncertain discrete time-delayed systems via delta operator approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1