Prediction of Structural Patterns of Interest from Protein Primary Sequence through Structural Alphabet: Illustration to ATP/GTP Binding Site Prediction

C. Reynès, Leslie Regad, R. Sabatier, A. Camproux
{"title":"Prediction of Structural Patterns of Interest from Protein Primary Sequence through Structural Alphabet: Illustration to ATP/GTP Binding Site Prediction","authors":"C. Reynès, Leslie Regad, R. Sabatier, A. Camproux","doi":"10.4172/2153-0602.1000167","DOIUrl":null,"url":null,"abstract":"The prediction of particular structural motifs associated to biological functions or to structure is of utmost importance. Given the increasing availability of primary sequences without any structure information, predictions from amino-acid (AA) sequences are essential. The proposed prediction method of structural motifs is a two-step approach based on a structural alphabet. This alphabet allows encoding any 3D structure into a 1D sequence of structural letters (SL). First, basic correspondence rules between AA and SL are learnt through genetic programming. Then, a Hidden Markov Model is learnt for each beforehand identified motif of interest. Finally, a probability to correspond to a given 3D motif for any given amino-acid sequence is provided. The method is applied on ATP binding sites to compare the efficiency of our method to other ones for a classical function. Then, the method ability to learn motifs corresponding to more rarely predicted functions or to other types of motifs is illustrated.","PeriodicalId":15630,"journal":{"name":"Journal of Data Mining in Genomics & Proteomics","volume":"20 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data Mining in Genomics & Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0602.1000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of particular structural motifs associated to biological functions or to structure is of utmost importance. Given the increasing availability of primary sequences without any structure information, predictions from amino-acid (AA) sequences are essential. The proposed prediction method of structural motifs is a two-step approach based on a structural alphabet. This alphabet allows encoding any 3D structure into a 1D sequence of structural letters (SL). First, basic correspondence rules between AA and SL are learnt through genetic programming. Then, a Hidden Markov Model is learnt for each beforehand identified motif of interest. Finally, a probability to correspond to a given 3D motif for any given amino-acid sequence is provided. The method is applied on ATP binding sites to compare the efficiency of our method to other ones for a classical function. Then, the method ability to learn motifs corresponding to more rarely predicted functions or to other types of motifs is illustrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过结构字母表预测蛋白质一级序列的结构模式:说明ATP/GTP结合位点预测
预测与生物功能或结构相关的特定结构基序是至关重要的。由于无任何结构信息的初级序列越来越多,从氨基酸(AA)序列进行预测是必要的。本文提出的结构基序预测方法是基于结构字母表的两步法。该字母表允许将任何3D结构编码为结构字母(SL)的1D序列。首先,通过遗传规划学习AA和SL之间的基本对应规则。然后,为每个预先识别的感兴趣的母题学习一个隐马尔可夫模型。最后,提供了与任何给定氨基酸序列对应的给定3D基序的概率。将该方法应用于ATP结合位点,比较了该方法与其他经典函数的效率。然后,说明了该方法学习与更少预测函数或其他类型基序相对应的基序的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proteomics Study of the Effect Left Atrial Appendage Resection on theEnergy Metabolism of Atrial Muscle in Beagle Dogs with Rapid Atrial Pacing Expression of NUP62 in the Development of Ovarian Cancer Translocation (2; 5) (q37.3, q14q35.3) in a Case of Male Infertility in Cotonou Editorial on Bioinformatics Tools and Techniques for Data Mining Ribosomes: Atomic Machines Association between Nucleic acids and Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1