Icon Set Selection via Human Computation

L. Laursen, Yuki Koyama, Hsiang-Ting Chen, Elena Garces, D. Gutierrez, R. Harper, T. Igarashi
{"title":"Icon Set Selection via Human Computation","authors":"L. Laursen, Yuki Koyama, Hsiang-Ting Chen, Elena Garces, D. Gutierrez, R. Harper, T. Igarashi","doi":"10.2312/PG.20161326","DOIUrl":null,"url":null,"abstract":"Picking the best icons for a graphical user interface is difficult. We present a new method which, given several icon candidates representing functionality, selects a complete icon set optimized for comprehensibility and identifiability. These two properties are measured using human computation. We apply our method to a domain with a less established iconography and produce several icon sets. To evaluate our method, we conduct a user study comparing these icon sets and a designer-picked set. Our estimated comprehensibility score correlate with the percentage of correctly understood icons, and our method produces an icon set with a higher comprehensibility score than the set picked by an involved icon designer. The estimated identifiability score and related tests did not yield significant findings. Our method is easy to integrate in traditional icon design workflow and is intended for use by both icon designers, and clients of icon designers.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20161326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Picking the best icons for a graphical user interface is difficult. We present a new method which, given several icon candidates representing functionality, selects a complete icon set optimized for comprehensibility and identifiability. These two properties are measured using human computation. We apply our method to a domain with a less established iconography and produce several icon sets. To evaluate our method, we conduct a user study comparing these icon sets and a designer-picked set. Our estimated comprehensibility score correlate with the percentage of correctly understood icons, and our method produces an icon set with a higher comprehensibility score than the set picked by an involved icon designer. The estimated identifiability score and related tests did not yield significant findings. Our method is easy to integrate in traditional icon design workflow and is intended for use by both icon designers, and clients of icon designers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图标集选择通过人工计算
为图形用户界面选择最好的图标是很困难的。我们提出了一种新的方法,给定几个代表功能的候选图标,选择一个完整的可理解性和可识别性优化的图标集。这两个属性是通过人工计算来测量的。我们将我们的方法应用于具有较不成熟的图标的领域,并产生了几个图标集。为了评估我们的方法,我们进行了一项用户研究,比较了这些图标集和设计师挑选的图标集。我们估计的可理解性得分与正确理解图标的百分比相关,我们的方法产生的图标集具有更高的可理解性得分,而不是由参与的图标设计师选择的图标集。估计的可识别性评分和相关测试没有产生显著的发现。我们的方法很容易集成到传统的图标设计工作流程中,适合图标设计师和图标设计师的客户使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1