Deep Learning on Digital Image Splicing Detection Using CFA Artifacts

Nadheer Younus Hussien, R. Mahmoud, Hala H. Zayed
{"title":"Deep Learning on Digital Image Splicing Detection Using CFA Artifacts","authors":"Nadheer Younus Hussien, R. Mahmoud, Hala H. Zayed","doi":"10.4018/ijskd.2020040102","DOIUrl":null,"url":null,"abstract":"Digitalimageforgeryisaseriousproblemofanincreasingattentionfromtheresearchsociety.Image splicingisawell-knowntypeofdigitalimageforgeryinwhichtheforgedimageissynthesizedfrom twoormoreimages.Splicingforgerydetectionismorechallengingwhencomparedwithotherforgery typesbecausetheforgedimagedoesnotcontainanyduplicatedregions.Inaddition,unavailabilityof sourceimagesintroducesnoevidenceabouttheforgeryprocess.Inthisstudy,anautomatedimage splicingforgerydetectionschemeispresented.Itdependsonextractingthefeatureofimagesbased ontheanalysisofcolorfilterarray(CFA).Afeaturereductionprocessisperformedusingprincipal componentanalysis (PCA) to reduce thedimensionalityof the resulting featurevectors.Adeep beliefnetwork-basedclassifierisbuiltandtrainedtoclassifythetestedimagesasauthenticorspliced images.TheproposedschemeisevaluatedthroughasetofexperimentsonColumbiaImageSplicing DetectionEvaluationDataset(CISDED)underdifferentscenariosincludingaddingpostprocessing onthesplicedimagessuchJPEGcompressionandGaussianNoise.Theobtainedresultsrevealthat theproposedschemeexhibitsapromisingperformancewith95.05%precision,94.05%recall,94.05% truepositiverate,and98.197%accuracy.Moreover,theobtainedresultsshowthesuperiorityofthe proposedschemecomparedtootherrecentsplicingdetectionmethod. KeywoRDS Color Filter Array, Deep Belief Network, Deep Learning, Digital Image Forgery, Splicing Forgery","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"98 1","pages":"31-44"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2020040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Digitalimageforgeryisaseriousproblemofanincreasingattentionfromtheresearchsociety.Image splicingisawell-knowntypeofdigitalimageforgeryinwhichtheforgedimageissynthesizedfrom twoormoreimages.Splicingforgerydetectionismorechallengingwhencomparedwithotherforgery typesbecausetheforgedimagedoesnotcontainanyduplicatedregions.Inaddition,unavailabilityof sourceimagesintroducesnoevidenceabouttheforgeryprocess.Inthisstudy,anautomatedimage splicingforgerydetectionschemeispresented.Itdependsonextractingthefeatureofimagesbased ontheanalysisofcolorfilterarray(CFA).Afeaturereductionprocessisperformedusingprincipal componentanalysis (PCA) to reduce thedimensionalityof the resulting featurevectors.Adeep beliefnetwork-basedclassifierisbuiltandtrainedtoclassifythetestedimagesasauthenticorspliced images.TheproposedschemeisevaluatedthroughasetofexperimentsonColumbiaImageSplicing DetectionEvaluationDataset(CISDED)underdifferentscenariosincludingaddingpostprocessing onthesplicedimagessuchJPEGcompressionandGaussianNoise.Theobtainedresultsrevealthat theproposedschemeexhibitsapromisingperformancewith95.05%precision,94.05%recall,94.05% truepositiverate,and98.197%accuracy.Moreover,theobtainedresultsshowthesuperiorityofthe proposedschemecomparedtootherrecentsplicingdetectionmethod. KeywoRDS Color Filter Array, Deep Belief Network, Deep Learning, Digital Image Forgery, Splicing Forgery
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CFA伪影的深度学习数字图像拼接检测
Digitalimageforgeryisaseriousproblemofanincreasingattentionfromtheresearchsociety。Image splicingisawell-knowntypeofdigitalimageforgeryinwhichtheforgedimageissynthesizedfrom twoormoreimages。Splicingforgerydetectionismorechallengingwhencomparedwithotherforgery typesbecausetheforgedimagedoesnotcontainanyduplicatedregions。Inaddition,unavailabilityof sourceimagesintroducesnoevidenceabouttheforgeryprocess。Inthisstudy,anautomatedimage splicingforgerydetectionschemeispresented。Itdependsonextractingthefeatureofimagesbased ontheanalysisofcolorfilterarray(CFA)。Afeaturereductionprocessisperformedusingprincipal componentanalysis (PCA)→reduce→thedimensionalityof→结果→featurevectors。Adeep beliefnetwork-basedclassifierisbuiltandtrainedtoclassifythetestedimagesasauthenticorspliced images。TheproposedschemeisevaluatedthroughasetofexperimentsonColumbiaImageSplicing DetectionEvaluationDataset(CISDED)underdifferentscenariosincludingaddingpostprocessing onthesplicedimagessuchJPEGcompressionandGaussianNoise。Theobtainedresultsrevealthat theproposedschemeexhibitsapromisingperformancewith95.05%precision,94.05%recall,94.05% truepositiverate,and98.197%accuracy。Moreover,theobtainedresultsshowthesuperiorityofthe proposedschemecomparedtootherrecentsplicingdetectionmethod。关键词:彩色滤波器阵列,深度信念网络,深度学习,数字图像伪造,拼接伪造
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Adaptive Histogram Binning-Based Lesion Segmentation for Discerning Severity in COVID-19 Chest CT Scan Images Information and Communication Technology Management for Sustainable Youth Employability in Underserved Society: Technology Use for Skills Development of Youths The stimulus of factors in implementing the e-governance concept in Namibia Confronting Current Crises and Critical Challenges of Climate Change International Perspective on Securing Cyberspace Against Terrorist Acts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1