Dramatically Enhanced Combination of Ultimate Tensile Strength and Electric Conductivity of Alloys via Machine Learning Screening

Hongtao Zhang, Huadong Fu, Xingqun He, Changsheng Wang, Lei Jiang, Long-Qing Chen, Jian-Xin Xie
{"title":"Dramatically Enhanced Combination of Ultimate Tensile Strength and Electric Conductivity of Alloys via Machine Learning Screening","authors":"Hongtao Zhang, Huadong Fu, Xingqun He, Changsheng Wang, Lei Jiang, Long-Qing Chen, Jian-Xin Xie","doi":"10.2139/ssrn.3646448","DOIUrl":null,"url":null,"abstract":"Abstract Optimizing two conflicting properties such as mechanical strength and toughness or dielectric constant and breakdown strength of a material has always been a challenge. Here we propose a machine learning approach to dramatically enhancing the combined ultimate tensile strength (UTS) and electric conductivity (EC) of alloys by identifying a set of key features through correlation screening, recursive elimination and exhaustive screening of existing datasets. We demonstrate that the key features responsible for solid solution strengthened conductive Copper alloys are absolute electronegativity, core electron distance, and atomic radius, based on which, we discovered a series of new alloying elements that can significantly improve the combined UTS and EC. The predictions are then validated by experimentally fabricating four new Cu-In alloys which could potentially replace the more expensive Cu-Ag alloys currently used in railway wiring. We show that the same set of key features can be generally applicable to designing a broad range of conductive alloys.","PeriodicalId":11974,"journal":{"name":"EngRN: Engineering Design Process (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Engineering Design Process (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3646448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

Abstract Optimizing two conflicting properties such as mechanical strength and toughness or dielectric constant and breakdown strength of a material has always been a challenge. Here we propose a machine learning approach to dramatically enhancing the combined ultimate tensile strength (UTS) and electric conductivity (EC) of alloys by identifying a set of key features through correlation screening, recursive elimination and exhaustive screening of existing datasets. We demonstrate that the key features responsible for solid solution strengthened conductive Copper alloys are absolute electronegativity, core electron distance, and atomic radius, based on which, we discovered a series of new alloying elements that can significantly improve the combined UTS and EC. The predictions are then validated by experimentally fabricating four new Cu-In alloys which could potentially replace the more expensive Cu-Ag alloys currently used in railway wiring. We show that the same set of key features can be generally applicable to designing a broad range of conductive alloys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习筛选显著增强合金的极限拉伸强度和电导率
摘要材料的机械强度和韧性、介电常数和击穿强度等两个相互矛盾的性能的优化一直是一个难题。在这里,我们提出了一种机器学习方法,通过相关性筛选、递归消除和对现有数据集的详尽筛选来识别一组关键特征,从而显著提高合金的综合极限拉伸强度(UTS)和电导率(EC)。研究表明,固溶体强化导电铜合金的主要特征是绝对电负性、核心电子距离和原子半径,并在此基础上发现了一系列新的合金元素,可以显著提高UTS和EC的综合性能。然后通过实验制造四种新的Cu-In合金来验证这些预测,这些合金有可能取代目前用于铁路布线的更昂贵的Cu-Ag合金。我们表明,相同的一组关键特征可以普遍适用于设计广泛的导电合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen Diffusion in Vacancy-Rich Ferrite and Austenite, from First Principles to Applications Characterization of Impurities and Inclusions in Ferrochrome Alloy and Their Effects on the Inclusion Characteristics in Stainless Steels Kinetics of Silicon Production by Aluminothermic Reduction of Silica Using Aluminum and Aluminum Dross as Reductants The Properties of Carbon Blends in Submerged arc Furnaces SlagCalculator: A Framework for Slag and Metallurgical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1