Bootstrap estimation of the effect of instrument response function uncertainty on the reconstruction of fusion neutron sources.

Kevin M. Lamb, V. Geppert-Kleinrath, N. Birge, C. Danly, L. Divol, D. Fittinghoff, M. Freeman, A. Pak, C. Wilde, A. Zylstra, P. Volegov
{"title":"Bootstrap estimation of the effect of instrument response function uncertainty on the reconstruction of fusion neutron sources.","authors":"Kevin M. Lamb, V. Geppert-Kleinrath, N. Birge, C. Danly, L. Divol, D. Fittinghoff, M. Freeman, A. Pak, C. Wilde, A. Zylstra, P. Volegov","doi":"10.1063/5.0086450","DOIUrl":null,"url":null,"abstract":"Neutron imagers are important diagnostics for the inertial confinement fusion implosions at the National Ignition Facility. They provide two- and three-dimensional reconstructions of the neutron source shape that are key indicators of the overall performance. To interpret the shape results properly, it is critical to estimate the uncertainty in those reconstructions. There are two main sources of uncertainties: limited neutron statistics, leading to random errors in the reconstructed images, and incomplete knowledge of the instrument response function (the pinhole-dependent point spread function). While the statistical errors dominate the uncertainty for lower yield deuterium-tritium (DT) shots, errors due to the instrument response function dominate the uncertainty for DT yields on the order of 1016 neutrons or higher. In this work, a bootstrapping method estimates the uncertainty in a reconstructed image due to the incomplete knowledge of the instrument response function. The main reconstruction is created from the fixed collection of pinhole images that are best aligned with the neutron source. Additional reconstructions are then built using subsets of that collection of images. Variations in the shapes of these additional reconstructions originate solely from uncertainties in the instrument response function, allowing us to use them to provide an additional systematic uncertainty estimate.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"29 1","pages":"043508"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0086450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neutron imagers are important diagnostics for the inertial confinement fusion implosions at the National Ignition Facility. They provide two- and three-dimensional reconstructions of the neutron source shape that are key indicators of the overall performance. To interpret the shape results properly, it is critical to estimate the uncertainty in those reconstructions. There are two main sources of uncertainties: limited neutron statistics, leading to random errors in the reconstructed images, and incomplete knowledge of the instrument response function (the pinhole-dependent point spread function). While the statistical errors dominate the uncertainty for lower yield deuterium-tritium (DT) shots, errors due to the instrument response function dominate the uncertainty for DT yields on the order of 1016 neutrons or higher. In this work, a bootstrapping method estimates the uncertainty in a reconstructed image due to the incomplete knowledge of the instrument response function. The main reconstruction is created from the fixed collection of pinhole images that are best aligned with the neutron source. Additional reconstructions are then built using subsets of that collection of images. Variations in the shapes of these additional reconstructions originate solely from uncertainties in the instrument response function, allowing us to use them to provide an additional systematic uncertainty estimate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仪器响应函数不确定性对聚变中子源重建影响的自举估计。
中子成像仪是国家点火装置惯性约束聚变内爆的重要诊断仪器。它们提供了中子源形状的二维和三维重建,这是整体性能的关键指标。为了正确地解释形状结果,估计这些重建中的不确定性是至关重要的。不确定性主要有两个来源:有限的中子统计量,导致重建图像中的随机误差,以及对仪器响应函数(针孔相关的点扩展函数)的不完全了解。统计误差主导了低产率氘-氚(DT)弹的不确定度,而仪器响应函数的误差主导了1016中子或更高数量级的DT产率的不确定度。在这项工作中,由于不完全了解仪器响应函数,一种自举方法估计了重建图像中的不确定性。主要的重建是由与中子源最佳对准的针孔图像的固定集合创建的。然后使用该图像集合的子集构建额外的重建。这些额外重建形状的变化完全源于仪器响应函数的不确定性,允许我们使用它们来提供额外的系统不确定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reservoir computing-based digital signal equalizer for equivalent-time sampling. Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields. Identifying stakeholder priorities in use of wearable cameras for researching parent-child interactions. Improving pose estimation accuracy for large hole shaft structure assembly based on super-resolution. Spectrum on demand light source (SOLS) for advanced photovoltaic characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1