Sima Sadeghzade, R. Amini Najafabadi, M. Meysami, A. Meysami, M. Khodaei, T. Isfahani
{"title":"Porous Titanium Scaffold: A New Design for Controlled Drug Delivery","authors":"Sima Sadeghzade, R. Amini Najafabadi, M. Meysami, A. Meysami, M. Khodaei, T. Isfahani","doi":"10.1155/2023/4664178","DOIUrl":null,"url":null,"abstract":"Gelatin crosslinking using conventional methods is usually associated with some toxic side effects. In this research, therefore, the vacuum heating method at 10 Pascal and 140°C under different times of 8, 16, and 32 h was used to cross-link strontium-loaded gelatin microparticles with varying degrees obtained by the oil/water mixing method on titanium scaffolds by the dip-coating method to avoid toxicity and also to control the strontium release rate to the surrounding tissue. The possible phases formed on the surface of the porous titanium scaffolds, the gelatin microparticle distribution, gelatin strontium loading, and strontium release were characterized using thin film X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and inductively coupled plasma-mass spectrometer (ICP-MS) machines, respectively. The results indicated that at 600°C, the rutile phase was formed on the surface of the heat-treated titanium scaffolds. Furthermore, strontium was successfully loaded in the spherical gelatin microparticles, and the strontium-loaded gelatin microparticles were distributed uniformly on the surface of the titanium scaffolds, while the rate of the in vitro strontium release decreased by increasing the time of the gelatin microparticle vacuum-heat crosslinking, whereas at the burst release step, the in vitro strontium release rates were around 5, 4.4, and 2.5 ppm/h, for the 8, 16, and 32 h vacuum-heat cross-linked gelatin microparticles, respectively.","PeriodicalId":18220,"journal":{"name":"Material Design & Processing Communications","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4664178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Gelatin crosslinking using conventional methods is usually associated with some toxic side effects. In this research, therefore, the vacuum heating method at 10 Pascal and 140°C under different times of 8, 16, and 32 h was used to cross-link strontium-loaded gelatin microparticles with varying degrees obtained by the oil/water mixing method on titanium scaffolds by the dip-coating method to avoid toxicity and also to control the strontium release rate to the surrounding tissue. The possible phases formed on the surface of the porous titanium scaffolds, the gelatin microparticle distribution, gelatin strontium loading, and strontium release were characterized using thin film X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and inductively coupled plasma-mass spectrometer (ICP-MS) machines, respectively. The results indicated that at 600°C, the rutile phase was formed on the surface of the heat-treated titanium scaffolds. Furthermore, strontium was successfully loaded in the spherical gelatin microparticles, and the strontium-loaded gelatin microparticles were distributed uniformly on the surface of the titanium scaffolds, while the rate of the in vitro strontium release decreased by increasing the time of the gelatin microparticle vacuum-heat crosslinking, whereas at the burst release step, the in vitro strontium release rates were around 5, 4.4, and 2.5 ppm/h, for the 8, 16, and 32 h vacuum-heat cross-linked gelatin microparticles, respectively.