Parallelism-flexible Convolution Core for Sparse Convolutional Neural Networks on FPGA

Salita Sombatsiri, S. Shibata, Yuki Kobayashi, Hiroaki Inoue, Takashi Takenaka, T. Hosomi, Jaehoon Yu, Yoshinori Takeuchi
{"title":"Parallelism-flexible Convolution Core for Sparse Convolutional Neural Networks on FPGA","authors":"Salita Sombatsiri, S. Shibata, Yuki Kobayashi, Hiroaki Inoue, Takashi Takenaka, T. Hosomi, Jaehoon Yu, Yoshinori Takeuchi","doi":"10.2197/ipsjtsldm.12.22","DOIUrl":null,"url":null,"abstract":"This paper proposes a convolution core for sparse CNN that is capable of flexibly alternating the parallelism schemes and degree exploiting intraand inter-output parallelism of the convolutional layer, and leveraging weight sparsity using a compressed sparse model in the compressed sparse column format and output-stationary dataflow. The experimental results show that the performance is improved by 3.9 times even in the deeper layer where the conventional accelerator could not fully exploit the parallelism due to the small layer size. The proposed architecture could also exploit the weight sparsity. Then, by combining both the multi-parallelism and the weight sparsity, the proposed architecture achieved 5.2 times better performance than the conventional accelerator.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.12.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a convolution core for sparse CNN that is capable of flexibly alternating the parallelism schemes and degree exploiting intraand inter-output parallelism of the convolutional layer, and leveraging weight sparsity using a compressed sparse model in the compressed sparse column format and output-stationary dataflow. The experimental results show that the performance is improved by 3.9 times even in the deeper layer where the conventional accelerator could not fully exploit the parallelism due to the small layer size. The proposed architecture could also exploit the weight sparsity. Then, by combining both the multi-parallelism and the weight sparsity, the proposed architecture achieved 5.2 times better performance than the conventional accelerator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的稀疏卷积神经网络并行柔性卷积核
本文提出了一种稀疏CNN的卷积核,该卷积核能够灵活地交替并行方案和度,利用卷积层的输出内并行性和输出间并行性,并在压缩稀疏列格式和输出平稳数据流中使用压缩稀疏模型利用权稀疏性。实验结果表明,在传统加速器由于层数小而无法充分发挥并行性的情况下,即使在较深的层中,性能也提高了3.9倍。所提出的体系结构还可以利用权重稀疏性。然后,结合多重并行性和权值稀疏性,该架构的性能比传统加速器提高了5.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IPSJ Transactions on System LSI Design Methodology
IPSJ Transactions on System LSI Design Methodology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Measurement Results of Real Circuit Delay Degradation under Realistic Workload A CMOS-compatible Non-volatile Memory Element using Fishbone-in-cage Capacitor Parallelizing Random and SAT-based Verification Processes for Improving Toggle Coverage LLVM-C2RTL: C/C++ Based System Level RTL Design Framework Using LLVM Compiler Infrastructure Feature Vectors Based on Wire Width and Distance for Lithography Hotspot Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1