首页 > 最新文献

IPSJ Transactions on System LSI Design Methodology最新文献

英文 中文
Parallelizing Random and SAT-based Verification Processes for Improving Toggle Coverage 并行化随机和基于sat的验证过程以提高切换覆盖率
Q4 Engineering Pub Date : 2023-01-01 DOI: 10.2197/ipsjtsldm.16.45
K. Hamaguchi
{"title":"Parallelizing Random and SAT-based Verification Processes for Improving Toggle Coverage","authors":"K. Hamaguchi","doi":"10.2197/ipsjtsldm.16.45","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.16.45","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82832675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature Vectors Based on Wire Width and Distance for Lithography Hotspot Detection 基于线宽和距离的光刻热点检测特征向量
Q4 Engineering Pub Date : 2023-01-01 DOI: 10.2197/ipsjtsldm.16.2
Gaku Kataoka, M. Yamamoto, Masato Inagi, Shinobu Nagayama, S. Wakabayashi
{"title":"Feature Vectors Based on Wire Width and Distance for Lithography Hotspot Detection","authors":"Gaku Kataoka, M. Yamamoto, Masato Inagi, Shinobu Nagayama, S. Wakabayashi","doi":"10.2197/ipsjtsldm.16.2","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.16.2","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87215897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement Results of Real Circuit Delay Degradation under Realistic Workload 实际工作负载下真实电路时延退化的测量结果
Q4 Engineering Pub Date : 2023-01-01 DOI: 10.2197/ipsjtsldm.16.27
K. Shimamura, Takeshi Takehara, Naohiro Ikeda
{"title":"Measurement Results of Real Circuit Delay Degradation under Realistic Workload","authors":"K. Shimamura, Takeshi Takehara, Naohiro Ikeda","doi":"10.2197/ipsjtsldm.16.27","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.16.27","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79426745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A CMOS-compatible Non-volatile Memory Element using Fishbone-in-cage Capacitor 一种采用鱼骨笼式电容的cmos兼容非易失性存储器元件
Q4 Engineering Pub Date : 2023-01-01 DOI: 10.2197/ipsjtsldm.16.35
Ippei Tanaka, N. Miyagawa, Tomoya Kimura, Takashi Imagawa, H. Ochi
{"title":"A CMOS-compatible Non-volatile Memory Element using Fishbone-in-cage Capacitor","authors":"Ippei Tanaka, N. Miyagawa, Tomoya Kimura, Takashi Imagawa, H. Ochi","doi":"10.2197/ipsjtsldm.16.35","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.16.35","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81401337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LLVM-C2RTL: C/C++ Based System Level RTL Design Framework Using LLVM Compiler Infrastructure LLVM- c2rtl:基于C/ c++的系统级RTL设计框架
Q4 Engineering Pub Date : 2023-01-01 DOI: 10.2197/ipsjtsldm.16.12
Tamon Sadasue, T. Isshiki
{"title":"LLVM-C2RTL: C/C++ Based System Level RTL Design Framework Using LLVM Compiler Infrastructure","authors":"Tamon Sadasue, T. Isshiki","doi":"10.2197/ipsjtsldm.16.12","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.16.12","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85693667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel Scheduling Attention Mechanism: Generalization and Optimization 并行调度注意机制:概化与优化
Q4 Engineering Pub Date : 2022-01-01 DOI: 10.2197/ipsjtsldm.15.2
Mingfei Yu, Yukio Miyasaka, M. Fujita
{"title":"Parallel Scheduling Attention Mechanism: Generalization and Optimization","authors":"Mingfei Yu, Yukio Miyasaka, M. Fujita","doi":"10.2197/ipsjtsldm.15.2","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.15.2","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75392197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Posit Based Multiply-accumulate Unit with Small Quire Size for Deep Neural Networks 一种基于位置的小队列乘累积单元深度神经网络
Q4 Engineering Pub Date : 2022-01-01 DOI: 10.2197/ipsjtsldm.15.16
Yasuhiro Nakahara, Yuta Masuda, M. Kiyama, M. Amagasaki, M. Iida
{"title":"A Posit Based Multiply-accumulate Unit with Small Quire Size for Deep Neural Networks","authors":"Yasuhiro Nakahara, Yuta Masuda, M. Kiyama, M. Amagasaki, M. Iida","doi":"10.2197/ipsjtsldm.15.16","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.15.16","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79625075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Scalable Hardware Architecture for fast Gradient Boosted Tree Training 用于快速梯度增强树训练的可扩展硬件架构
Q4 Engineering Pub Date : 2021-01-01 DOI: 10.2197/ipsjtsldm.14.11
Tamon Sadasue, Takuya Tanaka, Ryosuke Kasahara, Arief Darmawan, T. Isshiki
: Gradient Boosted Tree is a powerful machine learning method that supports both classification and regres- sion, and is widely used in fields requiring high-precision prediction, particularly for various types of tabular data sets. Owing to the recent increase in data size, the number of attributes, and the demand for frequent model updates, a fast and e ffi cient training is required. FPGA is suitable for acceleration with power e ffi ciency because it can realize a domain specific hardware architecture; however it is necessary to flexibly support many hyper-parameters to adapt to various dataset sizes, dataset properties, and system limitations such as memory capacity and logic capacity. We introduce a fully pipelined hardware implementation of Gradient Boosted Tree training and a design framework that enables a versatile hardware system description with high performance and flexibility to realize highly parameterized machine learning models. Experimental results show that our FPGA implementation achieves a 11- to 33-times faster performance and more than 300-times higher power e ffi ciency than a state-of-the-art GPU accelerated software implementation.
梯度提升树是一种强大的机器学习方法,支持分类和回归,广泛应用于需要高精度预测的领域,特别是各种类型的表格数据集。由于最近数据大小、属性数量的增加以及对频繁模型更新的需求,需要快速有效的训练。FPGA可以实现特定领域的硬件架构,适合于功率效率的加速;然而,有必要灵活地支持许多超参数,以适应不同的数据集大小、数据集属性和系统限制,如内存容量和逻辑容量。我们介绍了一个完全流水线的梯度增强树训练硬件实现和一个设计框架,该框架能够实现高性能和灵活性的通用硬件系统描述,以实现高度参数化的机器学习模型。实验结果表明,我们的FPGA实现实现了比最先进的GPU加速软件实现快11到33倍的性能和300倍以上的功率效率。
{"title":"Scalable Hardware Architecture for fast Gradient Boosted Tree Training","authors":"Tamon Sadasue, Takuya Tanaka, Ryosuke Kasahara, Arief Darmawan, T. Isshiki","doi":"10.2197/ipsjtsldm.14.11","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.14.11","url":null,"abstract":": Gradient Boosted Tree is a powerful machine learning method that supports both classification and regres- sion, and is widely used in fields requiring high-precision prediction, particularly for various types of tabular data sets. Owing to the recent increase in data size, the number of attributes, and the demand for frequent model updates, a fast and e ffi cient training is required. FPGA is suitable for acceleration with power e ffi ciency because it can realize a domain specific hardware architecture; however it is necessary to flexibly support many hyper-parameters to adapt to various dataset sizes, dataset properties, and system limitations such as memory capacity and logic capacity. We introduce a fully pipelined hardware implementation of Gradient Boosted Tree training and a design framework that enables a versatile hardware system description with high performance and flexibility to realize highly parameterized machine learning models. Experimental results show that our FPGA implementation achieves a 11- to 33-times faster performance and more than 300-times higher power e ffi ciency than a state-of-the-art GPU accelerated software implementation.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91185868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Lithography Using Machine Learning Models 使用机器学习模型的计算光刻
Q4 Engineering Pub Date : 2021-01-01 DOI: 10.2197/ipsjtsldm.14.2
Y. Shin
Machine learning models have been applied to a wide range of computational lithography applications since around 2010. They provide higher modeling capability, so their application allows modeling of higher accuracy. Many applications which are computationally expensive can take advantage of machine learning models, since a well trained model provides a quick estimation of outcome. This tutorial reviews a number of such computational lithography applications that have been using machine learning models. They include mask optimization with OPC (optical proximity correction) and EPC (etch proximity correction), assist features insertion and their printability check, lithography modeling with optical model and resist model, test patterns, and hotspot detection and correction.
自2010年左右以来,机器学习模型已广泛应用于计算光刻应用。它们提供了更高的建模能力,因此它们的应用程序允许更高精度的建模。许多计算成本高的应用程序可以利用机器学习模型,因为训练有素的模型可以快速估计结果。本教程回顾了一些使用机器学习模型的计算光刻应用。它们包括使用OPC(光学接近校正)和EPC(蚀刻接近校正)的掩模优化,辅助特征插入及其可印刷性检查,使用光学模型和抗蚀剂模型的光刻建模,测试模式以及热点检测和校正。
{"title":"Computational Lithography Using Machine Learning Models","authors":"Y. Shin","doi":"10.2197/ipsjtsldm.14.2","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.14.2","url":null,"abstract":"Machine learning models have been applied to a wide range of computational lithography applications since around 2010. They provide higher modeling capability, so their application allows modeling of higher accuracy. Many applications which are computationally expensive can take advantage of machine learning models, since a well trained model provides a quick estimation of outcome. This tutorial reviews a number of such computational lithography applications that have been using machine learning models. They include mask optimization with OPC (optical proximity correction) and EPC (etch proximity correction), assist features insertion and their printability check, lithography modeling with optical model and resist model, test patterns, and hotspot detection and correction.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76124171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Energy-aware Routing of Delivery Drones under Windy Conditions 多风条件下送货无人机的能量感知路径
Q4 Engineering Pub Date : 2021-01-01 DOI: 10.2197/ipsjtsldm.14.30
Satoshi Ito, Hiroki Nishikawa, Xiangbo Kong, Yusuke Funabashi, Atsuya Shibata, Shunsuke Negoro, Ittetsu Taniguchi, Hiroyuki Tomiyama
{"title":"Energy-aware Routing of Delivery Drones under Windy Conditions","authors":"Satoshi Ito, Hiroki Nishikawa, Xiangbo Kong, Yusuke Funabashi, Atsuya Shibata, Shunsuke Negoro, Ittetsu Taniguchi, Hiroyuki Tomiyama","doi":"10.2197/ipsjtsldm.14.30","DOIUrl":"https://doi.org/10.2197/ipsjtsldm.14.30","url":null,"abstract":"","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85853949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
IPSJ Transactions on System LSI Design Methodology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1