Wide-spectrum detector based on hierarchical flower-like In2S3 nanostructures by solvothermal process

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Functional Materials Letters Pub Date : 2023-06-30 DOI:10.1142/s1793604723510141
Zhao Liang, N. Yu, Shiyu Du, Benkang Liu, Yunfeng Wu
{"title":"Wide-spectrum detector based on hierarchical flower-like In2S3 nanostructures by solvothermal process","authors":"Zhao Liang, N. Yu, Shiyu Du, Benkang Liu, Yunfeng Wu","doi":"10.1142/s1793604723510141","DOIUrl":null,"url":null,"abstract":"Hierarchical flower-like In2S3 nanostructures were synthesized using a solvothermal process. The device based on In2S3 nanostructure was fabricated and the photoresponse properties were investigated. The flower-like In2S3 nanostructures display a strong quantum confinement with a wide band response in range from ultraviolet (UV) to the visible region. The results indicated that the photodetector based on hierarchical flower-like [Formula: see text]-In2S3 nanostructures will have important applications in multiple band detection devices.","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s1793604723510141","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical flower-like In2S3 nanostructures were synthesized using a solvothermal process. The device based on In2S3 nanostructure was fabricated and the photoresponse properties were investigated. The flower-like In2S3 nanostructures display a strong quantum confinement with a wide band response in range from ultraviolet (UV) to the visible region. The results indicated that the photodetector based on hierarchical flower-like [Formula: see text]-In2S3 nanostructures will have important applications in multiple band detection devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次化花状In2S3纳米结构的溶剂热法广谱探测器
采用溶剂热法合成了层次化的花状In2S3纳米结构。制备了基于In2S3纳米结构的器件,并对其光响应特性进行了研究。花状的In2S3纳米结构在紫外到可见光范围内具有较强的量子约束和宽带响应。结果表明,基于层次化花状纳米结构的in2s3光电探测器在多波段探测器件中具有重要的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Materials Letters
Functional Materials Letters 工程技术-材料科学:综合
CiteScore
2.40
自引率
7.70%
发文量
57
审稿时长
1.9 months
期刊介绍: Functional Materials Letters is an international peer-reviewed scientific journal for original contributions to research on the synthesis, behavior and characterization of functional materials. The journal seeks to provide a rapid forum for the communication of novel research of high quality and with an interdisciplinary flavor. The journal is an ideal forum for communication amongst materials scientists and engineers, chemists and chemical engineers, and physicists in the dynamic fields associated with functional materials. Functional materials are designed to make use of their natural or engineered functionalities to respond to changes in electrical and magnetic fields, physical and chemical environment, etc. These design considerations are fundamentally different to those relevant for structural materials and are the focus of this journal. Functional materials play an increasingly important role in the development of the field of materials science and engineering. The scope of the journal covers theoretical and experimental studies of functional materials, characterization and new applications-related research on functional materials in macro-, micro- and nano-scale science and engineering. Among the topics covered are ferroelectric, multiferroic, ferromagnetic, magneto-optical, optoelectric, thermoelectric, energy conversion and energy storage, sustainable energy and shape memory materials.
期刊最新文献
Efficient degradation of ciprofloxacin by waste eggshells derived ES/CuS heterostructure under visible light Influence of 2D CuxAl(100−x) electrodes on the CuxAl(100−x)/Cu21(SiO2)79/W memristive device Electronic properties of individual CsPbI2Br nanocrystals investigated by LT-STM Preparation and photoluminescence study of rare-earth-free red emitting La3Ga5SiO14:Mn4+phosphors Modulation mechanism of electronic and optical properties of Cs2SnX6(X = Cl, Br and I) under hydrostatic or uniaxial pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1